Find the radius of the circle whose centre is (3, 2) and passes through ( - 5, 6).
Answers
Answered by
303
Equation of circle with centre (h,k) and radius r is given by
(x-h)²+(y-k)²=r
Distance between 2 points (√[(x₂-x₁)²+(y₂-y₁)²]
Coordinates of center are (3,2)
Since it passes through (-5,6)
Radius of circle is the distance between two points (3,2) (-5,6)
=(√[(x₂-x₁)²+(y₂-y₁)²]
r=√[(3+5)²+(2-6)²]
=√(64+16)
=√(80)=(4x2x2x5)=4√ 5 units
(x-h)²+(y-k)²=r
Distance between 2 points (√[(x₂-x₁)²+(y₂-y₁)²]
Coordinates of center are (3,2)
Since it passes through (-5,6)
Radius of circle is the distance between two points (3,2) (-5,6)
=(√[(x₂-x₁)²+(y₂-y₁)²]
r=√[(3+5)²+(2-6)²]
=√(64+16)
=√(80)=(4x2x2x5)=4√ 5 units
Answered by
76
Answer:
radius=4.root5
Step-by-step explanation:
given:A circle with centre A(3,2)passing through B(-5,6).
distance between AB =root (x2-x1)2+(y2-y1)2
=root(-5-3)2+(6-2)2
=root 64+16
=root 80
=root 16*5
=4.root5 units
Here ;root denotes root symbol.
Thank you
Similar questions