Math, asked by sameer1213, 1 year ago

Find the radius of x^2-6x+8y+y^2=0

Answers

Answered by AbhijithPrakash
5

Answer:

\mathrm{Circle\:radius\:given}\:x^2-6x+8y+y^2=0:\quad r=5

Step-by-step explanation:

x^2-6x+8y+y^2=0

\mathrm{Circle\:Equation}

  • \left(x-a\right)^2+\left(y-b\right)^2=r^2\:\:\mathrm{is\:the\:circle\:equation\:with\:a\:radius\:r,\:centered\:at}\:\left(a,\:b\right)

\mathrm{Rewrite}\:x^2-6x+8y+y^2=0\:\mathrm{in\:the\:form\:of\:the\:standard\:circle\:equation}

x^2-6x+8y+y^2=0

\mathrm{Group\:x-variables\:and\:y-variables\:together}

\left(x^2-6x\right)+\left(y^2+8y\right)=0

\mathrm{Convert}\:x\:\mathrm{to\:square\:form}

\left(x^2-6x+9\right)+\left(y^2+8y\right)=9

\mathrm{Convert\:to\:square\:form}

\left(x-3\right)^2+\left(y^2+8y\right)=9

\mathrm{Convert}\:y\:\mathrm{to\:square\:form}

\left(x-3\right)^2+\left(y^2+8y+16\right)=9+16

\mathrm{Convert\:to\:square\:form}

\left(x-3\right)^2+\left(y+4\right)^2=9+16

\mathrm{Refine\:}9+16

\left(x-3\right)^2+\left(y+4\right)^2=25

\mathrm{Rewrite\:in\:standard\:form}

\left(x-3\right)^2+\left(y-\left(-4\right)\right)^2=5^2

\left(x-3\right)^2+\left(y-\left(-4\right)\right)^2=5^2

\mathrm{Therefore\:the\:circle\:properties\:are:}

\left(a,\:b\right)=\left(3,\:-4\right),\:r=5

\mathrm{And\:the\:radius\:is:}

r=5

Attachments:

sameer1213: osm answer!!
AbhijithPrakash: Thanks!!
Arjun2424: awsome mate
AbhijithPrakash: Thanks!!
BrainlyGod: ^_^. ......nice
AbhijithPrakash: Thank you!!
Similar questions