find the range of f(x)=3/2-x sq
Answers
Answered by
1
f(x ) = 3/( 2 - x²)
y = 3/( 2 - x²)
2y -yx² = 3
x²y -2y + 3 = 0
x² =(2y -3)/y
x = ±√{( 2y -3)/y }
f( y) = ±√{(2y -3)/y}
domain of f( y) = range of f(x )
(2y -3)/y ≥0 ,
y ≥ 3/2 and y <0 and y ≠ 0
if y = 0
f(x ) = y = 3/(2 -x²) =0
3 ≠ 0
so, y ≠ 0
hence , range of f(x) € [ 3/2, ∞) U(-∞, 0)
Attachments:
Similar questions