Math, asked by hamzazakir2002, 4 months ago

Find the range of the function
f(x) =(4sin^2x + 3)/7



Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

f(x) =  \frac{4 \sin^{2} (x)  + 3}{7}  \\

We know that,

0 \leqslant  \sin^{2} (x)  \leqslant 1

 \implies0 \leqslant 4 \sin^{2} (x)  \leqslant 4

 \implies3 \leqslant 4  \sin^{2} (x)  + 3 \leqslant 7

 \implies \frac{3}{7}  \leqslant  \frac{4 \sin^{2} (x) + 3 }{7}  \leqslant  \frac{7}{7}  \\

 \implies \frac{3}{7}  \leqslant f(x) \leqslant 1 \\

Hence, the range of f(x) is [ 3/7 , 1 ]

Similar questions