Math, asked by rio123491, 1 month ago

Find the range of the function f(x) = x^2+2x+1/x^2-8x+12​

Answers

Answered by senboni123456
1

Step-by-step explanation:

Let \tt\:y=f(x)=\frac{x^2+2x+1}{x^2-8x+12}\\

Now,

\tt\:y( {x}^{2}  - 8x + 12)=x^2+2x+1\\

\tt\: \implies \: y {x}^{2}  - 8yx + 12y=x^2+2x+1\\

\tt\: \implies \: (y - 1) {x}^{2}  - (8y + 2)x + (12y - 1)=0\\

Now, its discriminant will be greater than or equal to 0, as x is defined for all real numbers,

\tt\: \implies \:  (8y + 2)^{2}   - 4(y - 1)(12y - 1) \geqslant 0\\

\tt\: \implies \:  64y^{2}  + 32y + 4   - 4 (12 {y}^{2} - y - 12y + 1) \geqslant 0\\

\tt\: \implies \:  64y^{2}  + 32y + 4   - 48 {y}^{2}  + 52y  - 4\geqslant 0\\

\tt\: \implies \:  16y^{2}   +  84y  \geqslant 0\\

\tt\: \implies \:  4y(4y   +  21)  \geqslant 0\\

\tt\: \implies \:  16y \bigg(y   +   \frac{21}{4} \bigg)  \geqslant 0\\

\tt\: \implies \:  y \bigg(y   +   \frac{21}{4} \bigg)  \geqslant 0\\

 \tt  \pink{\implies \: y \in \bigg( -  \infty , -  \frac{21}{4} \bigg]  \:  \: \cup   \:  \bigg[ 0 , \infty  \bigg) } \\

Similar questions