Math, asked by kunjal281, 8 months ago

find the ratio (-3,5) ; (6,4) is divided by (-1,6) class 10th​

Answers

Answered by VishnuPriya2801
19

Answer:-

Given:

( - 1 , 6) divides the line segment joining the points ( - 3 , 5) & (6 , 4).

using section formula;

i.e., the co - ordinates of a point which divides the line segment joining the points (x₁ , y₁) , (x₂ , y₂) internally in the ratio m : n are:

 \sf \: (x \: , \: y) =  \bigg( \dfrac{mx _{2} + nx _{1} }{m + n}  \:  \:  ,\:  \: \dfrac{my _{2} + ny _{1} }{m + n} \bigg)

Let,

  • x₁ = - 3

  • x₂ = 6

  • y₁ = 5

  • y₂ = 4

  • x = - 1

  • y = 6

  • m = m

  • n = n.

Hence,

 \implies \sf \: (x \:,  \: y) =  \bigg( \dfrac{m( 6) + n( - 3)}{m + n}  \:  \: , \:  \:  \dfrac{m(4) + n(5)}{m + n}  \bigg) \\  \\ \implies \sf \:( - 1 \: , \: 6) = \bigg( \frac{6m - 3n}{m + n}  \:  \: , \:  \:  \frac{4m + 5n}{m + n}  \bigg) \\  \\  \implies \sf \:  - 1 =  \frac{6m - 3n}{m + n}  \\  \\  \implies \sf \:  - 1(m + n) = 6m - 3n \\  \\ \implies \sf \: - m  - n = 6m - 3n \\  \\ \implies \sf \: \:  - m  -  6m =  - 3n + n \\  \\ \implies \sf \: - 7m =  - 2n \\  \\ \implies \sf \: \frac{ - 7 \times m}{ - 2  \times n}  = 1 \\  \\ \implies \sf \red{ \frac{m}{n}  =  \frac{2}{7} }

⟹ m : n = 2 : 7.

Therefore, the ratio in which the point divides is 2 : 7.

Similar questions