Math, asked by nikhil17765, 7 months ago

find the ratio in which (11,15) divides the line segment joining the points (15,5) and (9,10)​

Answers

Answered by aryan073
1

____________________________________________________________________________

Find the ratio in which (11,15) divides the line segment joining the points (15,5) and

(9,10).

 \underline{ \bf \color{black}{  \red \bigstar \: find \: the \: ratio }}

 \:   \large \underline{ \sf{ \color{lime} { \: \dag \: by  \: \: section  \: \: formula}}}

\implies\bf{x=\dfrac{mx_1+nx_2}{m+n}  \: and \: y=\dfrac{my_1+ny_2}{m+n}}

\mapsto\large\sf{X=\dfrac{mx_1+mx_2}{m+n}}

\to\large\sf{11=\dfrac{m(15)+n(9)}{m+n}</p><p></p><p>[tex]\to\large\sf{11m+11n=15m+9n}}

\to\large\sf{11m-15m+11n-9n=0}

\to\large\sf{-4m+2n=0}

\to\large\sf{-4m=-2n}

\to\large\sf{2m=n}

 \star \color{orange} \sf{2m - n = 0....(1)}

\mapsto\large\sf{Y=\dfrac{my_1+ny_2}{m+n}}

\to\large\sf{15=\dfrac{5m+10n}{m+n}}

\to\large\sf{15m+15n=5m+10n}

\to\large\sf{15m+15n-5m-10n=0}

\to\large\sf{10m+5n=0}

to\large\sf{10m=-5n}

\to\large\sf{-2m=n}

 \:  \star \color{orange} \sf{2m + n = 0}......(2)

 \bigstar  \boxed{ \underline{ \underline { \bf{subtracting \: equation \: (1) \: and \: (2)}}}}

 \:  \bf{2m - n = 0}

 \ \bf{2m + n = 0}

 \:  \boxed{ \rm{n = 0}}

 \:  \bf{ substitute \: in \: equation \: (1)}

 \:  \bf{2m - 0 = 0}

 \:  \bf{2m = 0}

 \:  \bf{ie \: m = 0}

Similar questions