Math, asked by shaikharfat800, 10 months ago

find the ratio in which p(-4,6) divides the line joining the points A(-6,10) andb(3,-8)​

Answers

Answered by Anonymous
18

 \large\bf\underline \orange{Given:-}

  • p(-4,6) divides the line segment joining the points A(-6,10) and B(3,-8)

 \large\bf\underline \orange{To \: find:-}

  • Ratio in which p(-4,6) divides the line joining the points A(-6,10) andb(3,-8).

 \huge\bf\underline \green{Solution:-}

  • Let the ratio be k:1

Then,

  • By the section formula,

 \bold{ \underline{ \pink { \boxed {\bf{ \mid{\frac{m_1x_2+m_2x_1}{k + 1} \:  \:  \:  \frac{,m_1x_2+m_2x_1}{k + 1 } \mid \: \:  \:  \: }} }}}}

  • Let m1 = k and m2 = 1

 \rm \: p( \frac{k \times 3 + 1 \times  - 6}{k + 1}  \: , \:  \frac{k  \times - 8  + 1 \times 10}{k + 1}) \\  \\

1st case:-

\longmapsto \rm  \: \frac{3k - 6}{k + 1}  =  - 4 \\  \\ \longmapsto \rm  \:3k - 6 =  - 4k - 4 \\  \\ \longmapsto \rm  \:7k = 2 \\  \\ \longmapsto \bf \:k =  \frac{2}{7}

2nd case:-

 \longmapsto \rm \: \frac{ - 8k + 10}{k + 1} = 6  \\  \\   \longmapsto \rm \:  - 8k + 10 = 6k + 6 \\  \\  \longmapsto \rm \:  -14k =  - 4 \\  \\  \longmapsto \rm \: k =  \frac{4}{14}  \\  \\  \longmapsto \bf \: k =  \frac{2}{7}

So, k = 2/7 in both cases

So, the required ratio is 2:7

Hence, p divides AB in the ratio of 2:7

Answered by Anonymous
4

\red{\underline{\underline{Answer:}}}

\sf{The \ line \ segment \ is \ divided \ in}

\sf{ratio \ of \ 2:7}

\sf\orange{Given:}

\sf{\implies{P(-4,6) \ divides \ the \ line \ joining}}

\sf{the \ points \ A(-6,10) \ and \ B(3-8)}

\sf\pink{To \ find:}

\sf{The \ ratio \ in \ which \ line \ is \ divided.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Here, \ x=-4, \ y=6, \ x1=-6, \ y1=10, \ x2=3 \ and \ y2=-8}

\sf{By \ section \ formula}

\boxed{\sf{x=\frac{mx2+nx1}{m+n} \ ; \ y=\frac{my2+my1}{m+n}}}

\sf{\therefore{x=\frac{mx2+nx1}{m+n}}}

\sf{-4=\frac{m(3)+n(-6)}{m+n}}

\sf{-4(m+n)=3m-6n}

\sf{-4m-4n=3m-6n}

\sf{-4m-3m=-6n+4n}

\sf{-7m=-2n}

\sf{\frac{m}{n}=\frac{-2}{-7}}

\sf{\frac{m}{n}=\frac{2}{7}}

\sf{\therefore{m:n=2:7}}

\sf\purple{\tt{\therefore{The \ line \ segment \ is \ divided \ in}}}

\sf\purple{\tt{ratio \ of \ 2:7}}

Similar questions