find the ratio in which point (3,k) divides the segment joining (-6,10) and (4,6)
Answers
Answered by
0
Answer:
Answer
Using the section formula, if a point (x,y) divides the line joining the points (x
1
,y
1
) and (x
2
,y
2
) in the ratio m
1
:m
2
, then
(x,y)=(
m
1
+m
2
m
1
x
2
+m
2
x
1
,
m
1
+m
2
m
1
y
2
+m
2
y
1
)
Given that ratio m
1
:m
2
=xy
points A(−5,−4) and B(−2,3)
Let ratio be
m
2
m
1
=
1
m
Therefore,
x=
m
1
+m
2
m
1
x
2
+m
2
x
1
−3=
m+1
m.(−2)+(1)(−5)
−3(m+1)=−2m−5
−3m−3=−2m−5
−3+5=−2m+3m
m=2
m
2
m
1
=
1
2
Now, k=
m
1
+m
2
m
1
.y
2
+m
2
.y
1
k=
2+1
2.(3)+1(−4)
k=
3
6−4
k=2/3
∴k=2/3
Similar questions