Find the ratio in which the line x – 3y = 0 divides the line segment joining the points (–2, –5) and (6, 3). Find the coordinates of the point of intersection.
Answers
Answered by
31
Answer
Let the line x – 3y = 0 intersect the segment joining A(–2, –5) and B(6, 3) in the ratio k : 1.
∴ Coordinates of P are
(6k–2)/(k+1), (3k–5)/(k+1)
P lies on x – 3y = 0
⇒ (6k – 2)/(k + 1) = 3(3k – 5)/(k + 1)
6k - 2 = 9k - 15
k = 13/3
∴ Ratio is 13 : 3
⇒ Coordinates of P are (9/2, 3/2)
Answered by
6
Answer:
hey dear ..
coordinates on p = 9/2 , 3/2 .
hope it's helpful for you.
Similar questions