Math, asked by manandarak2206, 1 year ago

Find the ratio in which the line x+3y-14=0 divides the line segment joining the points A(-2,4) B(3,7).

Answers

Answered by MaheswariS
50

Answer:

The line x+3y-14=0 divides the line segment joining (-2,4) and (3,7) in the ratio 2:5

Step-by-step explanation:

\textsf{Concept:}

\textsf{The co ordinates of the point which divides the line segment joining}\textsf{$(x_1,y_1)$ and $(x_2,y_2)$ internally in the ratio m:n is}

\displaystyle\mathsf(\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n})

\textsf{Let P be the point on the line x+3y-14=0 which divides}\textsf{ line joining A(-2,4) and B(3,7) internally in the ratio m:n}

\textsf{Then, the coordinates P is}

\displaystyle\mathsf(\frac{m(3)+n(-2)}{m+n},\frac{m(7)+n(4)}{m+n})

\displaystyle\mathsf{(\frac{3m-2n}{m+n},\frac{7m+4n}{m+n})}

\textsf{since P lies on the line x+3y-14=0, we have}

\displaystyle\mathsf{(\frac{3m-2n}{m+n})+3(\frac{7m+4n}{m+n})-14=0}

\implies\mathsf{(3m-2n)+3(7m+4n)-14(m+n)=0}

\implies\mathsf{3m-2n+21m+12n-14m-14n=0}

\implies\mathsf{10m-4n=0}

\implies\mathsf{5m=2n}

\implies\mathsf{\frac{m}{n}=\frac{2}{5}}

\implies\boxed{\mathsf{m:n=2:5}}

Answered by jishamanheri08
2

Answer:

The line x+3y-14=0 divides the line segment joining (-2,4) and (3,7) in the ratio 2:5

The line x+3y-14=0 divides the line segment joining (-2,4) and (3,7) in the ratio 2:5Step-by-step explanation:

The line x+3y-14=0 divides the line segment joining (-2,4) and (3,7) in the ratio 2:5Step-by-step explanation:\textsf{Concept:}Concept:

The line x+3y-14=0 divides the line segment joining (-2,4) and (3,7) in the ratio 2:5Step-by-step explanation:\textsf{Concept:}Concept:\sorry dont know

Similar questions