Math, asked by mrudul44, 2 months ago

Find the ratio in which the point ( a ,1) divides the join of A (-5, 4 ) and B (3,-2).
Hence find a.

Answers

Answered by shivam000420
3

Step-by-step explanation:

Let's assume the point P (1,a) divide the lin segment AB in the ratio k:1.

Then by section formula, we have

1=

Answered by TheWonderWall
18

\large\sf\underline{Given}

  • A = ( -5 , 4 )

  • B = ( 3 , -2 )

\large\sf\underline{To\:find}

  • Ratio in which the point ( a , 1 ) divides the line .

  • Value of a .

\large\sf\underline{Solution}

Using the section formula , if a point ( x , y ) divides the line joining the points ( x1 , y1 ) and ( x2 , y2 ) in the ratio m : n , then

\small{\underline{\boxed{\mathrm\pink{(x,y)=[\frac{mx2+nx1}{m+n} ,\frac{my2+ny1}{m+n} ]}}}}

Let point P divides the join of A and B in the ratio m : n , then

\sf➣\:1=\frac{m(3)+n(-5)}{m+n}

\sf➣\:1=\frac{3m-5n}{m+n}

\sf➣\:m+n=3m-5n

\sf➣\:m-3m=-5n-n

\sf➣\:-2m=-6n

\sf➣\:2m=6n

\sf➣\:\frac{m}{n}=\frac{6}{2}

\sf➣\:\frac{m}{n}=\frac{3}{1}

{\sf{{\pink{➻\:m:n=3:1}}}}

Now ,

\sf⟹\:a=\frac{m(-2)+n(4)}{m+n}

\sf⟹\:a=\frac{3 \times (-2)+ 1 \times (4)}{3+1}

\sf⟹\:a=\frac{-6+4}{4}

\sf⟹\:a=\frac{-2}{4}

{\sf{{\pink{➻\:a=\frac{-1}{2}}}}}

◤━━━━━━━━━━━━━━━━━━━━◥

{\sf{{\red{AnsweR:}}}}

Ratio in which the point ( a , 1 ) divides the line = \small{\underline{\boxed{\mathrm\purple{m:n=3:1}}}}

Value of a =\small{\underline{\boxed{\mathrm\pink{\frac{-1}{2}}}}}

◣━━━━━━━━━━━━━━━━━━━━◢

  • Thnku :)
Similar questions