Find the ratio in which the point P(-2,-1) divides the segment joining the points (-5,2) and (2,-5)
Answers
Answered by
1
Answer:
Let the ratio be k:1.
A=(-5,2), B=(2,-5), P=(-2,-1)
x=(-2), x1=(-5), x2=2,y=(-1), y1=2, y2=(-5), m1=k, m2=1
k:1=3:4
Therefore, the ratio in which the point P divides the segment AB is 3:4
Answered by
0
Let the ratio be k:1.
A=(-5,2), B=(2,-5), P=(-2,-1)
x=(-2), x1=(-5), x2=2,y=(-1), y1=2, y2=(-5), m1=k, m2=1
x = \frac{m1 x2 + m2x1}{m1 + m2} < /p > < p >x=
m1+m2
m1x2+m2x1
</p><p> ( - 2) = \frac{k(2) + 1( - 5)}{k + 1}(−2)=
k+1
k(2)+1(−5)
( - 2)(k + 1) = k(2) + 1( - 5)(−2)(k+1)=k(2)+1(−5)
( - 2k) - 2 = 2k - 5(−2k)−2=2k−5
( - 2k) - 2k = ( - 5) + 2(−2k)−2k=(−5)+2
( - 4k) = ( - 3)(−4k)=(−3)
4k = 34k=3
\frac{k}{1} = \frac{3}{4}
1
k
=
4
3
k:1=3:4
Therefore, the ratio in which the point P divides the segment AB is 3:4
Similar questions