Find the ratio in which the point p(2,x) divides the line joining the point A(-2,2) B(3,7) internally .also find the value of x
Answers
Answer:
Let the ratio be k:1
So x1=2
2=(3k-2)/(k+1)
2k+2=3k-2
-k=-4
k=4:1
Ratio=4:1
x=(4*7+1*2)/(4+1)
x=(28+2)/5
x=6
Step-by-step explanation:
Let point (2,x) divides the line segment joining the points A(-2,2) B (3,7) internally in k:1.
Section formula:
If a point divides a line segment in m:n whose end points are (x_1,y_1)(x1,y1) and (x_2,y_2)(x2,y2) , then the coordinates of that point are
(\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n})(m+nmx2+nx1,m+nmy2+ny1)
If point (2,x) divides the segment AB internally in k:1, then
(2,x)=(\frac{(k)(3)+(1)(-2)}{k+1},\frac{(k)(7)+(1)(2)}{k+1})(2,x)=(k+1(k)(3)+(1)(−2),k+1(k)(7)+(1)(2))
(2,x)=(\frac{3k-2}{k+1},\frac{7k+2}{k+1})(2,x)=(k+13k−2,k+17k+2)
On comparing both sides.
2=\frac{3k-2}{k+1}2=k+13k−2
2(k+1)=3k-22(k+1)=3k−2
2k+2=3k-22k+2=3k−2
2k-3k=-2-22k−3k=−2−2
-k=-4−k=−4
k=4k=4
It means point (2,x) divides the segment AB internally in 4:1.
x=\frac{7k+2}{k+1}x=k+17k+2
Substitute k=4.
x=\frac{7(4)+2}{4+1}x=4+17(4)+2
x=\frac{30}{5}x=530
x=6x=6
Therefore, the value of x is 6.