Math, asked by parasramrai, 11 months ago

Find the ratio in which the point p whose ordinate is -3 divides the join of A(-2,3) and B(5,-15/2).

Please answer it fast I will mark as brainliest.

Plz don't write faltu answers

Answers

Answered by Rohit18Bhadauria
7

Given:

  • A point P whose ordinate is -3
  • Point P divides the line segment joining point A(-2,3) and point B(5,-15/2)

To Find:

  • Ratio in which point P divides the line segment AB

Sectional Formula

\setlength{\unitlength}{0.9 cm}}\begin{picture}(12,4)\thicklines\put(6,6){\line(1,0){5.5}}\put(5.6,5.9){$P$}\put(11.7,5.9){$Q$}\put(5.4,5.5){$(x_1\,,\,y_1)$}\put(11.4,5.5){$(x_2\,,\,y_2)$}\put(8,6){\circle*{0.2}}\put(7.8,6.3){$R$}\put(7.4,5.5){$(x\,,\,y)$}\put(6.6,6.3){$m$}\put(9.3,6.3){$n$}\put(11.7,5.9){$Q$}\end{picture}

Let P(x₁,y₁) and Q(x₂,y₂) be two points. Let the point R(x,y) divide the line segment joining the points P and Q internally in the ratio m:n, then

\sf{(x,y)=\bigg(\dfrac{mx_{2}+nx_{1}}{m+n},\dfrac{my_{2}+ny_{1}}{m+n}\bigg)}

Solution:

Let the ratio in which point P divides the line segment AB be λ:1

Also, let abscissa(x-coordinate) of point P be 'a'

Diagram:-

\setlength{\unitlength}{0.9 cm}}\begin{picture}(12,4)\thicklines\put(6,6){\line(1,0){5.5}}\put(5.6,5.9){$A$}\put(11.7,5.9){$B$}\put(5.4,5.5){$(-2\,,\,3)$}\put(11.4,5.5){$(5\,,\,-\dfrac{15}{2} )$}\put(8,6){\circle*{0.2}}\put(7.8,6.3){$P$}\put(7.4,5.5){$(a\,,\,-3)$}\put(6.6,6.3){$\lambda$}\put(9.3,6.3){$1$}\put(11.7,5.9){$B$}\end{picture}

Now, by using sectional formula, we get

\longrightarrow\sf{(a,-3)=\bigg(\dfrac{\lambda(5)-2}{\lambda+1},\dfrac{\lambda(\dfrac{-15}{2} ) +3}{\lambda +1}\bigg)}

\longrightarrow\sf{(a,-3)=\bigg(\dfrac{5\lambda-2}{\lambda+1},\dfrac{(\dfrac{-15\lambda+6}{2} )}{\lambda +1}\bigg)}

\longrightarrow\sf{(a,-3)=\bigg(\dfrac{5\lambda-2}{\lambda+1},\dfrac{-15\lambda+6}{2(\lambda +1)}\bigg)}

On comparing both the sides we get,

\rightarrow\sf{\dfrac{-15\lambda+6}{\:\:2(\lambda+1)}=-3}

\rightarrow\sf{-15\lambda+6=-6(\lambda+1)}

\rightarrow\sf{-15\lambda+6=-6\lambda-6}

\rightarrow\sf{6+6=15\lambda-6\lambda}

\rightarrow\sf{12=9\lambda}

\rightarrow\sf{9\lambda=12}

\rightarrow\sf{\lambda=\dfrac{\cancel{12}}{\cancel{9}}}

\rightarrow\sf{\lambda=\dfrac{4}{3}}

So, the required ratio is

\sf{\dfrac{\lambda}{1}=\dfrac{\frac{4}{3}}{1}}

\sf{\dfrac{\lambda}{1}=\dfrac{4}{3}}

λ:1= 4:3

Hence, point P divides the line segment AB in 4:3.

Answered by mohankhandelwal649
0

Step-by-step explanation:

4:3

no faltu answer

Similar questions