Math, asked by akashshakya855, 1 year ago

find the ratio in which y-axis divides a line segment joining the points A(5,-6) and B(-1,-4). Also find the coordination of point of division.​

Answers

Answered by ihrishi
1

Step-by-step explanation:

Let the point P(0, b) be on y -axis which divides the segment AB in the ratio m : n

A(5,-6)=(x_1, y_1)\\B(-1,-4)=(x_2, y_2)\\P(0, b)=(x, y)

Now by section formula for internal division, we have:

 \:  \:  \:  \:  \:  \:  \: x =  \frac{mx_2 + nx_1}{m + n}  \\  \implies \: 0 =  \frac{m( - 1) + n \times 5}{m + n}  \\ \implies \: 0   =  \frac{ - m + 5n}{m + n} \\ \implies \: 0    \times (m + n)=  - m + 5n \\ \implies \: 0 =  - m + 5n \\ \implies \: m = 5n \\ \implies \:  \frac{m}{n}  =  \frac{5}{1}  \\ \implies \: \huge \fbox{ m : n = 5 : 1 }\\ now \:  \\  \\  \:  \:  \:  \:  \:  \:  \: y =  \frac{my_2 + ny_1}{m + n}  \\  \implies \: b =  \frac{5( - 4) + 1 ( - 6)}{5 + 1}  \\ \implies \: b   =    \frac{ - 20  - 6}{6} \\ \implies \: b   =    \frac{ - 26}{6} \\ \implies \: b   =    \frac{ - 13}{3}  \\ thus \: P(0, b) = P(0, \frac{ - 13}{3}) \: is \: the  \\ coordinate \: of \: point \: of \: division.

Similar questions