Math, asked by saravanandhanyasree, 7 months ago

find the ratio in which Y axis divides the line segments joining the A(5,-6) and B(-1,-4) also find the coordinates of the point of division​

Answers

Answered by MisterIncredible
64

Question : -

Find the ratio in which y-axis divides the line segment joining the points A(5,-6) and B(-1,-4). Also find the co-ordinates of the point which divides the line ?

ANSWER

Given : -

A point on y-axis divides the line segment joining the points A(5,-6) and B(-1,-4)

Required to find : -

  • Ratio in which the line got divided ?
  • Co-ordinate of the point which divides the line segment AB ?

Formula used : -

Section formula

\pink{ \sf{ \bf{p(x,y)  =  \left \lgroup   \dfrac{m_1x_2+m_2x_1}{m_1+m_2} , \dfrac{ m_1 y_2 + m_2 y_1 }{ m_1 + m_2 }\right\rgroup}} }

Solution : -

A point on y-axis divides the line segment joining the points A(5,-6) & B(-1,-4)

Since, it is mentioned that the point is on y-axis

The x co-ordinate of that point should be 0(zero).

This implies;

The points which divides the line segment AB be p(x,y)

Now,

Let's first find the ratio which in return can help us to find the y co-ordinate !

So,

According to problem;

\sf{ A(x_1,y_1) = (5,-6) \qquad B(x_2,y_2) = (-1,-4) }

Using the formula;

\pink{ \sf{ \bf{p(x,y)  =  \left \lgroup   \dfrac{m_1x_2+m_2x_1}{m_1+m_2} , \dfrac{ m_1 y_2 + m_2 y_1 }{ m_1 + m_2 }\right\rgroup}} }

Substituting the values ;

\sf  p(0,y) = \left(  \dfrac{ m_1( -1) + m_2( 5)}{m_1+m_2} , \dfrac{ m_1(- 4) + m_2 ( - 6)}{m_1+m_2}   \right)  \\  \\  \\ \sf p(0,y) = \left( \dfrac{-m_1+5m_2}{m_1+m_2} , \dfrac{-4m_1-6m_2}{m_1+m_2} \right)   \\  \\   \red{ \mathscr{ By \ comparing \ the \ x \ co-ordinates \ on \ both \  sides  }}  \\  \\  \\  \sf 0 =  \dfrac{-m_1+5m_2}{m_1+m_2}   \\  \\ \rm{\blue{ By \:  cross - multiplication}  }  \:  \\  \\ \sf  0 = -m_1 + 5m_2   \\  \\  \sf m_1 = 5 m_2  \\  \\  \sf \dfrac{m_1}{m_2} = \dfrac{5}{1}  \\  \\  \implies{\pink{\sf{\bf{ m_1:m_2 = 5:1 }}}}

Now,

Substituting the value of ratio in the above formula we can find the y co-ordinate !

So,

 \sf p(0,y) = \left(  \dfrac{ 5( -1) + 1( 5)}{5+1} , \dfrac{ 5(- 4) +1 ( - 6)}{5+1}   \right) \\ \\   \\  \sf p(0,y) = \left(  \dfrac{  - 5 + 5}{6} , \dfrac{  -  20 - 6}{6}   \right) \\  \\  \\ \sf p(0,y) = \left(  \dfrac{  0}{6} , \dfrac{  -  26}{6}   \right) \\  \\  \\ \sf p(0,y) = \left(  0, \dfrac{  -  26}{6}   \right) \\  \\ \sf By \ comparing \ the \ co-ordinates \ on \ both \ sides  \\  \\ \green{  \therefore { \implies { \sf  {\bf { y = \dfrac{-26}{6} }}}}}

Therefore,

  • Ratio in which the point p(x, y) is 5:1
  • The co-ordinate of the point which divides the line segment is p(0,[-26]/[6])

Answered by rocky200216
125

\huge\bf{\underline{\underline{\gray{GIVEN:-}}}}

  • Y-axis divides the line segments joining the A(5,-6) and B(-1,-4) .

 \\

\huge\bf{\underline{\underline{\gray{TO\:FIND:-}}}}

  1. The ratio in which the line get's divided .
  2. Co-ordinate of the point which divides the line segment .

 \\

\huge\bf{\underline{\underline{\gray{SOLUTION:-}}}}

See the attachment diagram .

Here,

  1. Let point P is on y-axis, which intersect by AB line .

  • So the co-ordinates of the point P be (0 , y) [Let] .

Let,

  • The ratio be 'k : 1' .

We know that,

{\color{blue}\bigstar}\:\bf{\red{\overbrace{\underbrace{\color{aqua}{P_x\:=\:\dfrac{(m\:x_2\:+\:n\:x_1)}{m\:+\:n}\:}}}}} \\

Where,

  • m : n = k : 1

  • \bf\red{(x_1\:,\:y_1)} = (5 , -6)

  • \bf\red{(x_2\:,\:y_2)} = (-1 , -4)

  • \bf\red{(x_1)} = 5

  • \bf\red{(x_1)} = -1

\rm{\implies\:P_x\:=\:\dfrac{(k\times(-1)\:+\:1\times{5})}{k\:+\:1}\:} \\

\rm{\implies\:0\:=\:\dfrac{(-k\:+\:5)}{k\:+\:1}\:} \\

\rm{\implies\:\:-k\:+\:5\:=\:0\:} \\

\rm{\implies\:\:-k\:=\:-5\:} \\

\bf{\implies\:\:k\:=\:5\:} \\

\bf{\color{violet}{\implies\:k\::\:1\:=\:5\::\:1\:}} \\

Again we know that,

\purple\bigstar\:\bf{\blue{\overbrace{\underbrace{\green{P_y\:=\:\dfrac{(m\:y_2\:+\:n\:y_1)}{m\:+\:n}\:}}}}} \\

Where,

  • \bf\red{(y_1)} = -6

  • \bf\red{(y_2)} = -4

\rm{\implies\:P_y\:=\:\dfrac{\Big(5\times(-4)\:+\:1\times(-6)\Big)}{5\:+\:1}\:} \\

\rm{\implies\:P_y\:=\:\dfrac{\Big(-20\:+\:(-6)\Big)}{6}\:} \\

\rm{\implies\:P_y\:=\:\dfrac{\Big(-20\:-\:6\Big)}{6}\:} \\

\rm{\implies\:P_y\:=\:\dfrac{-26}{6}\:} \\

\bf{\implies\:P_y\:=\:\dfrac{-13}{3}\:} \\

\huge{\color{orange}\therefore} [1] The ratio in which the line get's divided is '5 : 1' .

\\\huge{\color{orange}\therefore} [2] Co-ordinate of the point which divides the line segment is '\bf{\Big(0\:,\:-\dfrac{13}{3}\Big)}' .

Attachments:
Similar questions