Physics, asked by antheajane305, 11 months ago

Find the ratio of the electrical and gravitational forces between two protons.

Answers

Answered by shilpa85475
2

The electrical and gravitational forces between two protons is =1.238 \times 10^{36}

Explanation:

Step 1:

We know that ,

m=1.67 \times 10^{-27} \mathrm{kg}

q=1.6 \times 10^{-19} \mathrm{C}

\mathrm{G}=6.67 \times 10^{-11} \mathrm{N}-\mathrm{m}^{2} / \mathrm{kg}^{2}

m is the  proton's mass,  

q is Charge on a proton,  

G is Gravitational constant,

Step 2:

Electrostatic force by Coulomb's Law,      

F_{e}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{r^{2}}    

step 3:

Gravitational force by Coulomb's Law,    

F_{g}=G \frac{m^{2}}{r^{2}}

\frac{F_{e}}{F_{g}}=\frac{\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{r^{2}}}{G \frac{m^{2}}{r^{2}}}

\frac{F_{e}}{F_{g}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{G m^{2}}

=9 \times 10^{9} \times \frac{1.6 \times 10^{-19} \times 1.6 \times 10^{-19}}{6.67 \times 10^{-11} \times\left(1.67 \times 10^{-27}\right)^{2}}

=9 \times 10^{9} \times \frac{2.56 \times 10^{-38}}{6.67 \times 10^{-11} \times\left(1.67 \times 10^{-27}\right)^{2}}

=\frac{23.04 \times 10^{-29}}{6.67 \times 10^{-11} \times 2.78 \times 10^{-54}}

=\frac{23.04 \times 10^{-29}}{6.67 \times 2.78 \times 10^{-65}}

=\frac{23.04 \times 10^{36}}{18.60}

=1.238 \times 10^{36}

Similar questions