Chemistry, asked by jrnndnfnfnf, 1 year ago

Find the ratio of volume of cylinder. When the radius is halved, and the height is same to that of volume of cylinder.​

Answers

Answered by Anonymous
0
 \sf \underline {\underline{ANSWER}} \\ \\ \sf Given, \\ \: \: \: \: \: \: \: \: \: \: \: \sf original \: volume \: (v_{1}) = \pi{r}^{2} h \\ \sf \: \: \: \: \: \: \: \: \: \: \: reduced \: length \: (v _{2}) \: = \\ \\ \tt{ \star } \: \: radius \: is \: halved \\ \tt \star \: \: height \: is \: same \\ \\ \sf = \pi(\frac{r}{2} )^{2} h \\ \\ \\ \therefore \sf ratio \: = \frac{\pi \times r \times r \times h }{ \pi \times \frac{r}{2} \times \frac{r}{2} \times h} = \bf \red {1 : 4}
Answered by Anonymous
0

Hello Friend..❤️❤️

✖️Find the ratio of volume of cylinder when the radius is half and the height is same to the volume of the cylinder ✖️

Ans

------

Given,

Original volume (V1) = πr^2

Reduced LENGTH (V2) = ?

---->Radius is half

----->Height is same

 = \pi( \frac{r}{2} ) {}^{2} h

 =  \frac{\pi \times r \times r \times h}{\pi \times  \frac{r}{2}  \times  \frac{r}{2} \times h }

=1:4

Thank you..☺️☺️

Similar questions