Math, asked by ehteshamulhaque, 1 year ago

Find the rational number A and B such that

Attachments:

HappiestWriter012: It is better to ask one by one so that you get good answers

Answers

Answered by DaIncredible
24
Hey friend,
Here is the answer you were looking for:

(i) \:  \frac{ \sqrt{2} - 1 }{ \sqrt{2}  + 1}  = a + b \sqrt{2}  \\



On rationalizing the denominator we get,

 =  \frac{ \sqrt{2}  - 1}{ \sqrt{2} + 1 }  \times  \frac{ \sqrt{2}  - 1}{ \sqrt{2} - 1 }  \\

Using the identity :

 {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy \\ (x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 =  \frac{ {( \sqrt{2} )}^{2}  +  {(1)}^{2} - 2( \sqrt{2})(1)  }{ {( \sqrt{2} )}^{2} -  {(1)}^{2}  }  \\  \\  =  \frac{2 + 1 - 2 \sqrt{2} }{2 - 1}  \\  \\   3 - 2 \sqrt{2}  = a + b \sqrt{2}  \\  \\ a = 3 \:  :  \: b =  - 2
(ii) \frac{2 -  \sqrt{5} }{2 +  \sqrt{5} }  = a \sqrt{5}  + b \\

On rationalizing the denominator we get,

 =  \frac{2 -  \sqrt{5} }{2 +  \sqrt{5} }  \times  \frac{2 -  \sqrt{5} }{2 -  \sqrt{5} }  \\

Using same identities as above :

 =  \frac{ {(2)}^{2} +  {( \sqrt{5} )}^{2}   - 2(2)( \sqrt{5} )}{ {(2)}^{2} -  {( \sqrt{5} )}^{2}  }  \\  \\  =  \frac{4 + 5 - 4 \sqrt{5} }{4 - 5}  \\  \\  =  \frac{9 - 4 \sqrt{5} }{ - 1}  \\  \\  =  - 9 + 4 \sqrt{5}  \\  \\ 4 \sqrt{5}  - 9 = a \sqrt{2}  + b \\  \\ a =  4 \:  :  \: b =  - 9 \\
(iii) \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  = a + b \sqrt{6}  \\

On rationalizing the denominator we get,

 =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }  \\

Using the denominator we get,

 {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\ (x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 =  \frac{ {( \sqrt{3}) }^{2}  +  {( \sqrt{2}) }^{2} + 2( \sqrt{3}  )( \sqrt{2} )}{ {( \sqrt{3} )}^{2}  -  {( \sqrt{2} )}^{2} }  \\  \\  =  \frac{3 + 2 + 2 \sqrt{6} }{3 - 2}  \\  \\   5 + 2 \sqrt{6}  = a + b \sqrt{6}  \\  \\ a = 5 \:  :  \: b = 2
(iv) \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  = a + b \sqrt{3}  \\

On rationalizing the denominator we get,

 =  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }  \\

Using the identity :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 =  \frac{5(7 - 4 \sqrt{3}) + 2 \sqrt{3}  (7 - 4 \sqrt{3}) }{ {(7)}^{2} -  {(4 \sqrt{3} })^{2}  }  \\  \\  =  \frac{35 - 20 \sqrt{3}  + 14 \sqrt{3}  - 24}{49 - 48}  \\  \\   11 - 6 \sqrt{3}  = a + b \sqrt{6}  \\ a = 11 \:  :  \: b =  - 6


Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺

ehteshamulhaque: Yes friend hi friend hello friend
ehteshamulhaque: Thanks friend very very much
ehteshamulhaque: All answer are right
DaIncredible: my pleasure... Glad to help
Anonymous: gr8 ....☺
DaIncredible: thanks bhai
DaIncredible: :D
DaIncredible: thanks for brainliest
Similar questions