Math, asked by ckishoreramana1093, 1 year ago

Find the rational numbers a and b such that 2+5√7/2-5√7=a+√7b

Answers

Answered by Aurora34
46
Given

 \frac{2 + 5 \sqrt{7} }{2 - 5 \sqrt{7} } = a + \sqrt{7} b
taking \: \: LHS \\ \\ = \frac{2 + 5 \sqrt{7} }{2 - 5 \sqrt{7} } \\ \\ = \frac{2 + 5 \sqrt{7} }{2 - 5 \sqrt{7} } \times \frac{2 + 5 \sqrt{7} }{2 + 5 \sqrt{7} } \: \\ \\ = \frac{(2 + 5 \sqrt{7})^{2} }{ {2}^{2} - (5 \sqrt{7})^{2} } \\ \\ = \frac{4+ 175 + 20 \sqrt{7} }{4 - 175} \\ \\ = \frac{179+ 20 \sqrt{7} }{ - 171}
there, on comparing it with a + √7 b we have

a= 179 and b= 20

_______________________________
Answered by NishantMishra3
40
=================
 \frac{2 + 5 \sqrt{7} }{2 - 5 \sqrt{7} }  \\  \\ on \: rationalising :  \\  \\   =  > \frac{2 + 5 \sqrt{7} }{2 - 5 \sqrt{7} }  \times  \frac{2 + 5 \sqrt{7} }{2 + 5 \sqrt{7} }  \\  \\  =  >  \frac{4 + 175 + 20 \sqrt{7} }{4 - 175}  =  >  \frac{179 + 20 \sqrt{7} }{ - 171}
by comparing

we have:


a=179

and

b=20

Steph0303: Grt one :-)
Similar questions