Math, asked by AyushJha2101, 2 months ago

Find the rational values of a and b from each of the following:

Attachments:

Answers

Answered by Anonymous
1

1.\frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5}- \sqrt{3} } = a+b \sqrt{15}

By Rationalization,

L.H.S, \\\frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} }  \times  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}+ \sqrt{3} }

____________________________

 \small \bold{On \:  Nominator, \: by \:  formula,  \: (a+b)^2 =a^2+ b^2+2ab}

\small\bold{On  \: Denominator, \: by \:  formula,  \: a^2 -b^2 =(a+b)(a-b)}

_____________________________________

\frac{ (\sqrt{5}+ \sqrt{3})^2 }{ (\sqrt{5})^2 - ( \sqrt{3})^2 }

\frac{5 + 3 + 2 \sqrt{15} }{5-3}

\frac{8+ 2\sqrt{15} }{2}

_____________________________________

Then,

\frac{8 + 2 \sqrt{15} }{2} = a+b \sqrt{15}

\frac{8}{2} + \frac{2 \sqrt{15} }{2} = a+b \sqrt{15}

4 + \sqrt{15} = a+b \sqrt{15}

Now,

a =4

b√15 =√15

_______________________

a= 4

b =1

Similar questions