Math, asked by MAHAJAN306, 9 months ago

Find the real numbers X and Y if (x – iy) (3 + 5i) is the conjugate
I want the answer now ...plz​

Answers

Answered by MaheswariS
3

\textbf{Given:}

\text{The complex numbers $x-i\,y$ and $3+5\i$ are complex conjugate of each other}

\textbf{To find:}

\text{The values of x and y}

\textbf{Solution:}

\text{We know that,}

\textbf{Two complex numbers $\bf\,z_1$ and $\bf\,z_2$ are said to}

\textbf{be complex conjugate of each other if $\bf\overline{z_1}=z_2$ (or) $\bf\overline{z_2}=z_1$}

\text{Since $x-i\,y$ and $3+5\i$ are complex conjugate of each other,}

\text{we have}

\overline{x-i\,y}=3+5\,i

x+i\,y=3+5\,i

\text{Equating corresponding real and imaginary}

\text{parts on bothsides, we get}

x=3\;\text{and}\;y=5

\textbf{Answer:}

\bf\,x=3

\bf\,y=5

Find more:

If a-bi/a+bi=1+i/1-i then,prove a+b=0

https://brainly.in/question/14173316

Express the complex number z = 5+i/2+3i in the form a + ib

https://brainly.in/question/6695271

Similar questions