Math, asked by tripurari1275, 1 year ago

find the reciprocal of

Attachments:

Answers

Answered by Anonymous
12

\bigg(\dfrac{2}{5}\bigg)^{3}  \:  \times  \: \bigg(\dfrac{5}{4}\bigg)^{2}

___________ [ GIVEN ]

• We have to find the reciprocal of it.

______________________________

\bigg(\dfrac{2}{5}\bigg)^{3}  \:  \times  \: \bigg(\dfrac{5}{4}\bigg)^{2}

First solve the powers.

\bigg(\dfrac{8}{125}\bigg)  \:  \times  \: \bigg(\dfrac{25}{16}\bigg)

Now.. Multiply them

\bigg(\dfrac{ { \cancel{8}}^{1} }{125}\bigg)  \:  \times  \: \bigg(\dfrac{25}{ { \cancel{16}}^{2} }\bigg)

\bigg(\dfrac{ {1} }{125}\bigg)  \:  \times  \: \bigg(\dfrac{25}{{2} }\bigg)

\bigg(\dfrac{ {1} }{ { \cancel{125}}^{5} }\bigg)  \:  \times  \: \bigg(\dfrac{ { \cancel{25}}^{1} }{{2} }\bigg)

\bigg(\dfrac{ {1} }{{5} }\bigg)  \:  \times  \: \bigg(\dfrac{{1} }{{2} }\bigg)

\dfrac{1}{10}

Now.. take reciprocal of it.

→ 10

___________________________

10 is the reciprocal of \bigg(\frac{2}{5}\bigg)^{3}  \:  \times  \: \bigg(\frac{5}{4}\bigg)^{2}

__________ [ ANSWER ]

____________________________

Similar questions