Math, asked by avika9536, 4 months ago

find the reciprocal of​

Attachments:

Answers

Answered by Skyllen
8

(v) |-5|

Reciprocal of |-5| =  \sf \dfrac{1}{5}

━━━━━━━━━━━━━━━

(vi) -1 3/8

Converting mixed fraction into simple fraction

 \sf \longmapsto \large| - 1 \dfrac{3}{8} \large| \\ \\ \sf\longmapsto \:  \large| \dfrac{ - ( 8 \times  1+ 3}{8}) \large|  \\   \\ \sf\longmapsto \large| \dfrac{ - 11 }{8}\large| \\ \\ \sf \longmapsto  \dfrac{ 11}{8}

Reciprocal of 11/8 =  \sf \dfrac{8}{11}

━━━━━━━━━━━━━━━

(vii)

\longmapsto \large| - \{ \sf 2 \dfrac{3}{4} \} \large| \\ \\ \sf\longmapsto \large| - \{ \dfrac{11}{4} \} \large| \\ \\ \sf\longmapsto \dfrac{11}{4}

Reciprocal of 11/4 =  \sf \dfrac{4}{11}

━━━━━━━━━━━━━━━

(viii)

\sf\longmapsto  \large| \dfrac{1}{6}  -  \dfrac{1}{4}  \large|  \\  \\ \sf\longmapsto  \large|  \dfrac{4 - 6}{24}  \large|  \\  \\  \sf\longmapsto  \large| \dfrac{ - 2}{24 } \large|  \\ \\ \sf\longmapsto \dfrac{1}{12}

Reciprocal of 1/12 = 12/1

━━━━━━━━━━━━━━━

(ix)

 \sf\longmapsto \:  \large| - 1 \dfrac{3}{4}  \times 2 \dfrac{5}{8} \large| \\  \\  \sf\longmapsto \:  \large| \dfrac{ - 7}{4}  \times  \dfrac{21}{8} \large|   \\  \\  \sf\longmapsto \:  \large| \dfrac{ -147}{32} \large| \\ \\ \sf\longmapsto \dfrac{147}{32}

Reciprocal of 147/32 = \sf\dfrac{32}{147}

━━━━━━━━━━━━━━━

(x)

\sf\longmapsto   \large| \dfrac{ - 17}{81}  \times  \dfrac{ - 5}{34}  \times |  \dfrac{ - 9}{5}  \large|   \\  \\  \sf\longmapsto \large|  \:  \dfrac{  - 1 \times  - 1 \times  - 1}{9 \times 2 \times 1}  \: \large| \\  \\  \sf\longmapsto \:  \large| \: \dfrac{ - 1}{8} \large| \:  \\  \\  \sf \longmapsto  \dfrac{1}{8} \:

Reciprocal of 1/8 = 8/1

Answered by Anonymous
9

{\large{\bold{\sf{\underline{Questions}}}}}

\; \; \; \; \; \; \;{\bold{\sf{\longrightarrow Question \: 5}}}

{\bold{\bf{|- 5 |}}}

\; \; \; \; \; \; \;{\bold{\sf{\longrightarrow Question \: 6}}}

{\bold{\bf{| - 1 \dfrac{3}{8} |}}}

\; \; \; \; \; \; \;{\bold{\sf{\longrightarrow Question \: 7}}}

{\bold{\bf{ -  |2 \dfrac{3}{4} |}}}

\; \; \; \; \; \; \;{\bold{\sf{\longrightarrow Question \: 8}}}

{\bold{\bf{ | \dfrac{1}{6} -  \dfrac{1}{4}  |}}}

\; \; \; \; \; \; \;{\bold{\sf{\longrightarrow Question \: 9}}}

{\bold{\bf{  -  |1 \dfrac{3}{4} \times 2 \dfrac{5}{8}  |}}}

\; \; \; \; \; \; \;{\bold{\sf{\longrightarrow Question \: 10}}}

{\bold{\bf{ | -  \dfrac{17}{81}  \times  \dfrac{ - 5}{34}  \times  \dfrac{ -9}{5} |}}}

{\large{\bold{\sf{\underline{Answers}}}}}

\; \; \; \; \; \; \;{\bold{\sf{\longrightarrow Answer \: 5}}}

{:\implies} {\bold{\bf{|- 5 |}}}

{:\implies} {\bold{\bf{| \dfrac{-1}{5} |}}}

{:\implies} {\bold{\bf{\dfrac{1}{5}}}}

\; \; \; \; \; \; \;{\bold{\sf{\longrightarrow Answer \: 6}}}

{:\implies} {\bold{\bf{| - 1 \dfrac{3}{8} |}}}

{:\implies} {\bold{\bf{| \dfrac{-11}{8} |}}}

{:\implies} {\bold{\bf{| \dfrac{-8}{11} |}}}

{:\implies} {\bold{\bf{\dfrac{8}{11}}}}

\; \; \; \; \; \; \;{\bold{\sf{\longrightarrow Answer \: 7}}}

{:\implies} {\bold{\bf{ -  |2 \dfrac{3}{4} |}}}

{:\implies} {\bold{\bf{- | \dfrac{11}{4} |}}}

{:\implies} {\bold{\bf{- | \dfrac{4}{11} |}}}

{:\implies} {\bold{\bf{\dfrac{-4}{11}}}}

\; \; \; \; \; \; \;{\bold{\sf{\longrightarrow Answer \: 8}}}

{:\implies} {\bold{\bf{ | \dfrac{1}{6} -  \dfrac{1}{4}  |}}}

  • Taking LCM

{:\implies} {\bold{\bf{ | \dfrac{4-6}{24} |}}}

{:\implies} {\bold{\bf{ | \dfrac{-2}{24} |}}}

{:\implies} {\bold{\bf{ | \dfrac{-1}{24} |}}}

{:\implies} {\bold{\bf{ | -12 |}}}

{:\implies} {\bold{\bf{12}}}

\; \; \; \; \; \; \;{\bold{\sf{\longrightarrow Answer \: 9}}}

{:\implies} {\bold{\bf{-1 \dfrac{3}{4} \times 2 \dfrac{5}{8}}}}

{:\implies} {\bold{\bf{\dfrac{-7}{4} \times \dfrac{21}{8}}}}

{:\implies} {\bold{\bf{\dfrac{-147}{32}}}}

{:\implies} {\bold{\bf{\dfrac{-32}{147}}}}

\; \; \; \; \; \; \;{\bold{\sf{\longrightarrow Question \: 10}}}

{:\implies} {\bold{\bf{ | -  \dfrac{17}{81}  \times  \dfrac{ - 5}{34}  \times  \dfrac{ -9}{5} |}}}

  • Cancelling the digits

{:\implies} {\bold{\bf{ | -  \dfrac{1}{9}  \times  \dfrac{ -1}{2}  \times  \dfrac{ -1}{1} |}}}

{:\implies} {\bold{\bf{|\dfrac{-1}{8}| }}}

{:\implies} {\bold{\bf{8}}}

\rule{150}{2}

Remember : Inside | | the negative numbers are be positive by themselves. Means no number still negative inside it , they be positive when open.

Similar questions