Math, asked by jeffreytamayo330, 5 months ago

Find the relation between the volumes and the surface areas of the cylinder, sphere and
cone, when their heights and diameters are equal.

Answers

Answered by mathdude500
1

Given Question :-

  • Find the relation between the volumes and the surface areas of the cylinder, sphere and cone, when their heights and diameters are equal.

Given :-

  • The height and diameter of cylinder, sphere and cone are equal.

To Find :-

  • The relationship between the Volumes and Surface Area.

Formula used :-

{{ \boxed{\large{\bold\green{Volume_{(Cylinder)}\: = \:\pi r^2 h }}}}}

{{ \boxed{\large{\bold\pink{Volume_{(Cone)}\: = \:\dfrac{1}{3} \pi r^2 h }}}}}

{{ \boxed{\large{\bold\purple{Volume_{(Sphere)}\:\ = \:\dfrac{4}{3}\pi r^3}}}}} \:

Solution :-

\begin{gathered}\begin{gathered}\bf Let = \begin{cases} &\sf{r = radius \: of \: cylinder, \: cone \: and \: sphere} \\ &\sf{h = height \: of \: cylinder, \: cone \: and \: sphere} \end{cases}\end{gathered}\end{gathered}

☆It is given that height of cylinder, cone and sphere are equal.

☆We know, height of sphere = diameter of sphere.

So, h = 2r

\sf \:  ⟼Volume  \: of \:  cylinder, V_1 \:  = \pi \:  {r}^{2} h  = 2\pi \:  {r}^{3}

\sf \:  ⟼Volume  \: of \:  cone, V_3 \:  = \dfrac{1}{3}  \pi \:  {r}^{2} h = \dfrac{2}{3}  \pi \:  {r}^{3}

\sf \:  ⟼Volume  \: of \:  sphere, V_2 \:  =  \dfrac{4}{3} \pi \:  {r}^{3}

\sf \:  ⟼According \:  to  \: statement, \: we \: have \: to \: find

\sf \:  V_1 : V_2 : V_3

\sf \:  ⟼2\pi \:  {r}^{3}  : \dfrac{4}{3} \pi \:  {r}^{3} : \dfrac{2}{3} \pi \:  {r}^{3}

\sf \:  ⟼6 : 4 : 2

\sf \:  ⟼3 : 2 : 1

\bf\implies \:\ V_1 : V_2 : V_3 =  3: 2 : 1

☆Case :- 2.

Formula used :-

{{ \boxed{\large{\bold\green{Surface Area_{(Cylinder)}\: = \:2\pi r(h +r)}}}}}

{{ \boxed{\large{\bold\green{Surface Area_{(sphere)}\: = \:4\pi r^2}}}}}

{{ \boxed{\large{\bold\green{Surface Area_{(Cone)}\: = \:\pi r(l +r)}}}}}

Solution :-

\sf \: Surface \:  Area \:  of  \: cylinder  = 2\pi \: r(h + r)

\sf \:  ⟼S_1 = 2\pi \: r(2r + r) = 6\pi \:  {r}^{2}

\sf \: Surface  \: Area \:  of \: cone \:  = \pi \: r(l + r)

\sf \:  ⟼S_3 = \pi \:r( \sqrt{ {h}^{2}  +  {r}^{2}  }  + r)

\sf \:  ⟼S_3 = \pi \:r( \sqrt{ {(2r)}^{2}  +  {r}^{2} }  + r)

\sf \:  ⟼S_3 = \pi \:r( \sqrt{ {4r}^{2}  +  {r}^{2} }  + r)

\sf \:  ⟼S_3 = \pi \:r( \sqrt{ 5 {r}^{2} }  + r)

\sf \:  ⟼S_3 = \pi \:r( \sqrt{5}r  + r)

\sf \:  ⟼S_3 = \pi \: {r}^{2} ( \sqrt{5}  +1 )

\sf \:  Surface  \: Area  \: of  \: sphere,S_2 = 4\pi \: {r}^{2}

\sf \:  ⟼According  \: to  \: statement \: we \: have \: to \: find \:

\bf \:S_1:S_2:S_3

\sf \:  ⟼6\pi \:  {r}^{2} :4\pi \:  {r}^{2} :\pi \: {r}^{2} ( \sqrt{5}  +1 )

\sf \:  ⟼\sf \:  ⟼6 : 4 :  \sqrt{5}  + 1

\bf\implies \:S_1:S_2:S_3 = \sf \:  ⟼6 : 4 :  \sqrt{5}  + 1

__________________________________________

\large \red{\bf \:  ⟼ Explore  \: more } ✍

Perimeter of rectangle = 2(length× breadth)

Diagonal of rectangle = √(length ²+breadth ²)

Area of square = side²

Perimeter of square = 4× side

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Similar questions