Math, asked by nageswarimuthukumar, 10 months ago

find the relationship between zeroes and coefficient of the polynomial
5x²-6x-8​

Answers

Answered by FantasticQueen
1

\huge{\underline{\underline{\mathfrak{\sf{Answer-}}}}}

\huge \implies \large \sf \:  {5x}^{2}  - 6x - 8 \\ \huge \implies \large \sf \: 5 {x}^{2}  - 10x  + 4x - 8 \\ \huge \implies \large \sf \: 5x(x - 2) + 4(x - 2) \\ \huge \implies \large \sf \: (5x  + 4)(x - 2) \\ \huge \implies \ \sf \:  x =  -  \frac{ 4}{5} and \: x = 2

\huge{\underline{\tt{Verifying\: the\: relationship}}}

\huge \implies \large \sf \:  \alpha  +  \beta  =  \frac{ - b}{a}  \\ \huge \implies \large \sf \:  (\frac{ - 4}{5} ) + 2 =  \frac{6}{5}  \\ \huge \implies \large \sf \:  \frac{ - 4 + 10}{5}  \\ \huge \implies \large \sf \:  \frac{6}{5}  \\ \huge \implies \large \sf \:  \alpha  \times  \beta  =  \frac{c}{a}  \\ \huge \implies \large \sf \:  \frac{ - 4}{5}  \times 2 =  \frac{ - 8}{5}  \\ \huge \implies \large \sf \:  \frac{ - 8}{5}  \\  \\ \huge \implies \large \sf \: l.h.s = r.h.s \:  in \: both \: cases \: \\  \\ \huge \implies \large \tt \: hence \: verified

Similar questions