Find the remainder when 33333.....36 times is divided by 19?
Answers
Answered by
1
Heya user,
_______________________________________________________________
Clearly,
33333333333... = 3 * ( 1111111111... 36 times)
= 3 * [10^(36) - 1] / 9 = [ 10^36 - 1 ] / 3
____________________________________________________________
Now, Ф(19) = 18
By Euler's phi function, 10^18 ≡ 1 (mod 19)
=> 10^36 ≡ 1 (mod 19)
=> [ 10^36 - 1 ] ≡ 0 (mod 19)
Hence, 19 divides [ 10^36 - 1 ]... and so------>
19 divides ---> [ 10^36 - 1 ] / 3
=> 19 | 3333333333... { 36 times }
Hence, the remainder is 0.
_______________________________________________________________
Clearly,
33333333333... = 3 * ( 1111111111... 36 times)
= 3 * [10^(36) - 1] / 9 = [ 10^36 - 1 ] / 3
____________________________________________________________
Now, Ф(19) = 18
By Euler's phi function, 10^18 ≡ 1 (mod 19)
=> 10^36 ≡ 1 (mod 19)
=> [ 10^36 - 1 ] ≡ 0 (mod 19)
Hence, 19 divides [ 10^36 - 1 ]... and so------>
19 divides ---> [ 10^36 - 1 ] / 3
=> 19 | 3333333333... { 36 times }
Hence, the remainder is 0.
Similar questions