Find the remainder when 7777 .... (upto 37 digits) is divided by 19.
Answers
Answered by
0
Heya user,
just answered similar question, so I'll just copy paste the main part...
7777777... = 7 * ( 1111111111... 36 times)
= 7 * [10^(36) - 1] / 9
_____________________________________________________________
Now, Ф(19) = 18
By Euler's phi function, 10^18 ≡ 1 (mod 19)
=> 10^36 ≡ 1 (mod 19)
=> [ 10^36 - 1 ] ≡ 0 (mod 19)
Hence, 19 divides [ 10^36 - 1 ]
____________________________________________________________
Again, 7777777777777... ( 37 times ) = 10[ 777... ( 36 times ) ] + 7
We see, 19 divides [ 10^36 - 1 ], and so,
19 | ( 1111111... { 36 times } )
Hence, 19 divides 10 * 7 [ 11111111111.. {36 times} ]
But,
7777777777777... ( 37 times ) = 10[ 777... ( 36 times ) ] + 7 = 19x + 7
Hence, rem. when 777... { 37 times } is divided by 19 is 7...
just answered similar question, so I'll just copy paste the main part...
7777777... = 7 * ( 1111111111... 36 times)
= 7 * [10^(36) - 1] / 9
_____________________________________________________________
Now, Ф(19) = 18
By Euler's phi function, 10^18 ≡ 1 (mod 19)
=> 10^36 ≡ 1 (mod 19)
=> [ 10^36 - 1 ] ≡ 0 (mod 19)
Hence, 19 divides [ 10^36 - 1 ]
____________________________________________________________
Again, 7777777777777... ( 37 times ) = 10[ 777... ( 36 times ) ] + 7
We see, 19 divides [ 10^36 - 1 ], and so,
19 | ( 1111111... { 36 times } )
Hence, 19 divides 10 * 7 [ 11111111111.. {36 times} ]
But,
7777777777777... ( 37 times ) = 10[ 777... ( 36 times ) ] + 7 = 19x + 7
Hence, rem. when 777... { 37 times } is divided by 19 is 7...
Similar questions