Math, asked by nageshbollabathini93, 7 months ago

Find the remainder when f(x)=x^3-6x^2+2x-4 is divided by (3x-1), and verify the result by actual division.​

Answers

Answered by meghjaiswal29
1

Answer:

Step-by-step explanation:

When f(x) is divided by then remainder =f(a)

g(x)=3x−1=3(x−13)

a=13

Rem=f(13)=(13)3−6(13)2+2(13)−4

=127−69+23−4

=127−4

=−10727.

Answered by itsbrainlybiswa
18

Answer:

Here, g(x)=3x−1. To apply Remainder theorem, (3x−1) should be converted to (x−a) form.

∴3x−1=  

3

1

​  

(3x−1)=x−  

3

1

​  

∴g(x)=(x−  

3

1

​  

)

By remainder theorem, r(x)=p(a)=p(  

3

1

​  

)

p(x)=x  

3

−6x  

2

+2x−4⇒p(  

3

1

​  

)=(  

3

1

​  

)  

3

−6(  

3

1

​  

)  

2

+2(  

3

1

​  

)−4

=  

27

1

​  

−  

9

6

​  

+  

3

2

​  

−4=  

27

1−18+18−108

​  

=  

27

−107

​  

 

∴ the remainder p(  

3

1

​  

)=−  

27

107

Step-by-step explanation:

Similar questions