Math, asked by Chicago1754, 11 months ago

Find the remainder when t6 +3t2+10 is divided by t3 +1

Answers

Answered by Agastya0606
4

Given: The terms t^6 +3t^2+10 and t^3 +1

To find: The remainder when t^6 +3t^2+10 is divided by t^3 + 1

Solution:

  • Now we have given two terms:

                  t^6 +3t^2+10 is divided by t^3 +1

  • By long division, we have:

                  t^3 +1 ) t^6 + 0t^5 + 0t^4 + 0t^3 + 3t^2 + 0t + 10 (t^3 - 1

                              t^6                              t^3

                            (   -                                 -   )

                                                                 -t^3 + 3t^2 + 0t + 10

                                                                -t^3                      -  1

                                                                (   +                           + )

                                                                           3t^2 + 0t + 11

  • So the remainder is 3t^2 + 11

Answer:

            So the remainder comes out to be 3t^2 + 11.

Similar questions