Math, asked by anwesh59, 1 year ago

find the remainder when the polynomial 2x^4-6x^3+2x^2-x+2 divide by x-2​

Answers

Answered by vinu9776
71

Step-by-step explanation:

If x + 2 = 0

x = -2

f(x) = 2x4 – 6x3 + 2x2 – x + 2, [By remainder theorem]

f(x) = 2(-2)4 – 6(-2)3 + 2(- 2)2 – (- 2) + 2

= 2(16) – 6(- 8) + 2(4) + 2 + 2

= 32 + 48 + 8 + 2 + 2 = 92

Hence, required remainder = 92.

plzz mark my answer as the brainliest answer.

Answered by BrainlyKing5
19

Answer:

\underline{\boxed{\mathsf{Remainder=(-8)}}}

Step-by-step explanation:

\underline{\underline{\textsf{Given that}}}

\mathsf{Polynomial\: 2 {x}^{4}  - 6 {x}^{3}  + 2 {x}^{2}  - x + 2 \: devided\:by\: x-2 }

and now we need to find remainder ...

\underline{\underline{\textsf{Solution}}}

\underline{\textsf{Let the polynomial be }}

\mathsf{p(x) = 2 {x}^{4}  - 6 {x}^{3}  + 2 {x}^{2}  - x + 2 \:}

\bigstar \bf{\textsf{  Remainder theorem}}

Remainder theorem states that ...

When a polynomial 'p(x)' divided by a linear polynomial 'x - a' then the remainder (r) = p(a)

\underline{\textsf{Therefore by using remainder theorem in the our question we have}}

\mathsf{p(x) = 2 {x}^{4}  - 6 {x}^{3}  + 2 {x}^{2}  - x + 2 \:}

and

\mathsf{ Zero\: of\: divisor }

\mathsf{ x-2 = 0 \implies x=2}

Thus

\mathsf{Remainder\: (r) \:= p(2) = 2 ({2}^{4})  - 6 ({2}^{3}) + 2 ({2}^{2})  - 2 + 2 \:}

\implies \mathsf{2 ({2}^{4})  - 6 ({2}^{3})  + 2 ({2}^{2})  - 2 + 2 \:}

\implies \mathsf{2 (16) - 6 (8) + 2(4) - 2 + 2 \:}

\implies \mathsf{32 - 48 + 8 - 2 + 2 \:}

\implies \mathsf{-16+8-2+2= -8}

\underline{\textbf{Required remainder is}}

\underline{\boxed{\boxed{\textsf{r = (-8)}}}}

Similar questions