find the remainder when x cube + 3 X square + 3 X + 1 is divided by 5 + 2 x using remainder theorem
Answers
Answer:
Apply remainder theroem
Apply remainder theroem5+2x=0
Apply remainder theroem5+2x=02x=-5
Apply remainder theroem5+2x=02x=-5x=5/2
Apply remainder theroem5+2x=02x=-5x=5/2replace x by -5/2 , we get
Apply remainder theroem5+2x=02x=-5x=5/2replace x by -5/2 , we get x3+3x2+3x+1
Apply remainder theroem5+2x=02x=-5x=5/2replace x by -5/2 , we get x3+3x2+3x+1= (-5/2)3+3(-5/2)2+3(-5/2)+1
Apply remainder theroem5+2x=02x=-5x=5/2replace x by -5/2 , we get x3+3x2+3x+1= (-5/2)3+3(-5/2)2+3(-5/2)+1= -125/8+75/4-15/2+1
Apply remainder theroem5+2x=02x=-5x=5/2replace x by -5/2 , we get x3+3x2+3x+1= (-5/2)3+3(-5/2)2+3(-5/2)+1= -125/8+75/4-15/2+1= (-125+150-60+8)/125
Apply remainder theroem5+2x=02x=-5x=5/2replace x by -5/2 , we get x3+3x2+3x+1= (-5/2)3+3(-5/2)2+3(-5/2)+1= -125/8+75/4-15/2+1= (-125+150-60+8)/125= -27/8
Apply remainder theroem5+2x=02x=-5x=5/2replace x by -5/2 , we get x3+3x2+3x+1= (-5/2)3+3(-5/2)2+3(-5/2)+1= -125/8+75/4-15/2+1= (-125+150-60+8)/125= -27/8therefore the remainder is -27/8