Math, asked by Ramaa637, 1 year ago

Find the remainder when x3 - 3x2 +3x -1 divided by x-1

Answers

Answered by singhsaabthegreat090
14

Answer:

F(x) x3 - 3x2 + 3x - 1

G(x) x-1

By Remainder Theorem

X - 1 =0

X=0+1

X=1

(1)^3 - 3(1)^2 + 3(1) - 1

1 - 3 + 3 - 1

1 -1 +3 -3

0

Step-by-step explanation:

Answered by renukaprasadsompura
0

By remainder theorem

By remainder theoremx+1=0

By remainder theoremx+1=0x=−1

By remainder theoremx+1=0x=−1p(x)=x

By remainder theoremx+1=0x=−1p(x)=x 3

By remainder theoremx+1=0x=−1p(x)=x 3 +3x

By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2

By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)

By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1)

By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3

By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1)

By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1) 2

By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1) 2 −3(−1)−1

By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1) 2 −3(−1)−1=−1+3(1)+3−1

By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1) 2 −3(−1)−1=−1+3(1)+3−1=−1+3+3−1

By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1) 2 −3(−1)−1=−1+3(1)+3−1=−1+3+3−1=6−2

By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1) 2 −3(−1)−1=−1+3(1)+3−1=−1+3+3−1=6−2=4

By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1) 2 −3(−1)−1=−1+3(1)+3−1=−1+3+3−1=6−2=4Thus remainder is 4

Similar questions