Find the remainder when x3 - 3x2 +3x -1 divided by x-1
Answers
Answer:
F(x) x3 - 3x2 + 3x - 1
G(x) x-1
By Remainder Theorem
X - 1 =0
X=0+1
X=1
(1)^3 - 3(1)^2 + 3(1) - 1
1 - 3 + 3 - 1
1 -1 +3 -3
0
Step-by-step explanation:
By remainder theorem
By remainder theoremx+1=0
By remainder theoremx+1=0x=−1
By remainder theoremx+1=0x=−1p(x)=x
By remainder theoremx+1=0x=−1p(x)=x 3
By remainder theoremx+1=0x=−1p(x)=x 3 +3x
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1)
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1)
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1) 2
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1) 2 −3(−1)−1
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1) 2 −3(−1)−1=−1+3(1)+3−1
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1) 2 −3(−1)−1=−1+3(1)+3−1=−1+3+3−1
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1) 2 −3(−1)−1=−1+3(1)+3−1=−1+3+3−1=6−2
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1) 2 −3(−1)−1=−1+3(1)+3−1=−1+3+3−1=6−2=4
By remainder theoremx+1=0x=−1p(x)=x 3 +3x 2 −3x−1p(−1)=(−1) 3 +3(−1) 2 −3(−1)−1=−1+3(1)+3−1=−1+3+3−1=6−2=4Thus remainder is 4