Find the remainder when x³+3x²+3x+1 is divided x-1 Using the long division method
Answers
Answered by
0
Answer:
Answer:
Quotient=x²+(3-π)x+(3-3π+π²)
Quotient=x²+(3-π)x+(3-3π+π²)Remainder =1-(3-3π-π²)π
Step-by-step explanation:
Given (x³+3x²+3x+1)÷(x+π)
Division Method:
Quotient:x²+(3-π)x+(3-3π+π²)
x+π)x³+3x²+3x+1(
**** x³+πx²
__________________
*******(3-π)x²+3x
*******(3-π)x²+(3-π)πx
_________________________
********* (3-3π+π²)x+1
******(3-3π+π²)x+(3-3π+π²)π
______________________________
Remainder :1-(3-3π-π²)π
Therefore,
Dividend = (x³+3x²+3x+1)
Divisor = x + π
Quotient=x²+(3-π)x+(3-3π+π²)
Remainder =1-(3-3π-π²)π
•••♪
Similar questions