Math, asked by bellarmentm41, 1 year ago

find the reminder when 3x cube- 6x square + 3x - 7/9 is divided by 3x-4​

Answers

Answered by amankumaraman11
3

We have,

 \huge f(x) = 3x - 4 \\  \\  \sf \rightarrow f(x) = 3x - 4 = 0 \\  \sf \rightarrow f(x) = \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  x =   \pink{\frac{4}{3} }

And,

 \bf \large p(x) =  {3x}^{3}  -  {6x}^{2}  + 3x -  \frac{7}{9}

Now, Putting the value of x form the given f(x) in p(x)

 \bf \small p( \frac{4}{3}) = 3 {( \frac{4}{3} )}^{3}  - 6 {( \frac{4}{3} )}^{2}  +  \cancel3( \frac{4}{ \cancel3} ) -  \frac{7}{9}  \\  \\  \sf \rightarrow  \cancel3 \times  \frac{64}{ \cancel{27} \: 9}  -  \cancel6 \times  \frac{16}{ \cancel9}  + 4 -  \frac{7}{9}  \\  \\ \sf \rightarrow  \frac{64}{9} -  \frac{32}{3}  + 4 -  \frac{7}{9}   \\ \\ \sf \rightarrow \frac{64 - 96 + 36 - 7}{9}  \\ \sf \rightarrow \frac{100 - 103}{9}  =  \frac{ \cancel{ - 3}}{ \cancel9}  \\ \sf \rightarrow  \red{-  \frac{1}{3} }

Hence, On dividing the given p(x) by provided f(x), then, the remainder would be   \bf  \large{ \red{  - \frac{1}{3} }} .

<marquee>#BAL

Similar questions