Math, asked by kyuvrajkklyuvaraj579, 11 months ago

find the root of √3x+4x+√3=0​

Answers

Answered by Vamprixussa
1

Given equation

\sqrt{3} x^{2} +4x+\sqrt{3} =0

Solving, we get,

\sqrt{3} x^{2} +4x+\sqrt{3}=0\\ \implies \sqrt{3}x^{2}  +x+ 3x +\sqrt{x} =0\\\implies x(\sqrt{3} x +1)+\sqrt{3} (\sqrt{3} x+1)=0\\\implies (x+\sqrt{3} )(\sqrt{3} x+1)=0

Now,

x+\sqrt{3}=0\\ \implies \boxed{\boxed{\bold{x = \sqrt{-3} }}}}

\sqrt{3} x+1=0\\\implies \sqrt{3}x=-1\\ \implies \boxed{\boxed{\bold{x=\dfrac{-1}{\sqrt{3} } }}}}

                                                     

Answered by Saby123
2

Factoring the above equation ,

 \sqrt{3}  {x}^{2}  + 4x +  \sqrt{3}  = 0 \\  \\  =  >   \sqrt{3} {x}^{2}  + 3x + x +  \sqrt{3}  =0 \\  \\  =  >  \sqrt{3} x(x +  \sqrt{3} ) + 1(x +  \sqrt{3} ) = 0 \\  \\ (x +  \sqrt{3} )( \sqrt{3} x + 1) =0 \\  \\ x =  -  \sqrt{3}  \: or \:  \frac{ - 1}{ \sqrt{3} }

Similar questions