Math, asked by skyadav78, 1 year ago

find the root of the equation 5x-6x-2=0 .<br /><br />by competing the square.

Answers

Answered by omkarbhendekar3
0

Answer:


Step-by-step explanation:

Sbduf

Shdhhdf

Gdhfncb

Dhhdhhf

Gxbxbb

Answered by silentlover45
3

\huge\underline\mathfrak{Questions:-}

  • \: \: \: \: \: Find \: \: the \: \: root \: \: of \: \: the \: \: equation \: \:  {5x}^{2} \: - \: {6x} \: - \: {2} \: \: = \: \: {0}. \: \: by \: \: competing \: \: the \: \:  square.

\underline\mathfrak{Given:-}

  • \: \: \: \: \: The \: \: given \: \: quadratic \: \: equation \: \: is

\: \: \: \: \: \leadsto \: \: {5x}^{2} \: - \: {6x} \: - \: {2} \: \: = \: \: {0}

\underline\mathfrak{To \: \: Find:-}

  • \: \: \: \: \: Roots \: \: of \: \: the \: \: equation.?

\huge\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: \: \: {5x}^{2} \: - \: {6x} \: - \: {2} \: \: = \: \: {0}

\: \: \: \: \: \underline{Divide \: \: both \: \: side \: \: of \: \: equation \: \: by \: \: 5}

\: \: \: \: \: \leadsto \: \: \frac{{5x}^{2}}{5} \: - \: \frac{6x}{5} \: - \: \frac{2}{5} \: \: = \: \: \frac{0}{5}

\: \: \: \: \: \leadsto \: \: {x}^{2} \: - \: \frac{6x}{5} \: - \: \frac{2}{5} \: \: = \: \: 0

\: \: \: \: \: \leadsto \: \: {x}^{2} \: - \: \frac{6x}{5} \: \: = \: \: \frac{2}{5}

\: \: \: \: \: \underline{Add \: \: {(\frac{3x}{5})}^{2} \: \: on \: \: both \: \: side \: \: of \: \: equation.}

\: \: \: \: \: \leadsto \: \: {x}^{2} \: - \: \frac{6x}{5} \: + \: \frac{9}{25} \: \:= \: \: \frac{2}{5} \: \: + \: \frac{9}{25}

\: \: \: \: \: \leadsto {(x \: + \: \frac{3}{5})}^{2} \: \: = \: \: \frac{10 \: + 9}{25} \: \:

\: \: \: \: \: \leadsto {(x \: + \: \frac{3}{5})}^{2} \: \: = \: \: \frac{19}{25} \: \:

\: \: \: \: \: \leadsto {x \: + \: \frac{3}{5}} \: \: = \: \: \sqrt{\frac{19}{25}} \: \:

\: \: \: \: \: \leadsto {x} \: \: = \: \: \pm\frac{\sqrt{19}}{5} \: - \: \frac{3}{5}

\: \: \: \: \: {x} \: \: = \: \: \frac{\sqrt{19} \: - \: 3}{5} \: \: \: \: Or \: \: \: \: {x} \: \: = \: \: - \:  \frac{({\sqrt{19} \: + \: 3})}{5}

\: \: \: \: \: \underline{So, \: \: the \: \: roots \: \: of \: \: the \: \: given \: \: equation \: \: are \: \: as:-}

\: \: \: \: \: {x} \: \: = \: \: \frac{\sqrt{19} \: - \: 3}{5} \: \: \: \: Or \: \: \: \: {x} \: \: = \: \: - \:  \frac{({\sqrt{19} \: + \: 3})}{5}

______________________________________

Similar questions