find the root of the following quadratic equation, if they exist by the method of completing the squares:
(1) 4x2 + 4√3x + 3 = 0
Answers
Answered by
5
Step-by-step explanation:
Nature of roots is determined by the discriminant(value under square root). In general, discriminant = b² - 4ac, for ax² + bx + c = 0.
Here,
a = 4 ; b = 4√3 ; c = 3
Thus, discriminant is,
⇒ b² - 4ac
⇒ (4√3)² - 4(4)(3)
⇒ 48 - 48
⇒ 0, it means, roots exist and are real & equal.
So, now we can factorize.
⇒ 4x² + 4√3x + 3 = 0
⇒ x² + √3x + (3/4) = 0
⇒ x² + √3x = - 3/4
⇒ x² + 2(√3 /2)x + (√3 /2)² = -3/4 + (√3 /2)²
⇒ (x + √3 /2)² = -3/4 + 3/4
⇒ (x + √3 /2)² = 0
⇒ x + √3 /2 = 0
⇒ x = - √3/2
Similar questions