Math, asked by ssgaming1million, 2 months ago

Find the roots of 2(x²-4x) + 2 = 0 and choose the correct option

A) 3,-3
B) V3, -v3
C) 2+ √3, 2-√3
D) 5, -1​

Answers

Answered by BeautifullMind
909

Question:-

Find the roots of 2(x²-4x) + 2 = 0

Solution:-

 \begin{array}{l l l} \rightarrow\bf{2(x {}^{2}  - 4x) + 2} \\  \\ \rightarrow \:  \bf{2x {}^{2}  - 8x + 2 = 0} \\  \\ \rightarrow \:  \bf{2(x {}^{2}  - 4x + 1) = 0 } \\ \\  \underline \bold \red{✰ \: Divide  \: both \:  sides  \: of \:  the \:  equation \:  by \:  the  \: same \:  term} \\  \\ \rightarrow \:  \bf{x- 4x + 1 = 0} \\  \\   \underline \bold \purple{✰ \: Using \:  the \:  quadratic \:  formula} \\ \\    \:  \bf \large \orange{x =  \frac{ - b  \pm \:  \sqrt{b² -4ac} }{2a}}  \\ \\   \rightarrow \:  \bf{x- 4x + 1 = 0}  \\  \:   \\  \end{array}

Here,

  • a = 1
  • b = -4
  • c = 1

  \begin{array}{ l l l}\large\bf { \mapsto \: x =  \frac{ -  ( - 4)  \:  \pm \:  \sqrt{( - 4)² -4 \times 1 \times 1} }{2 \times 1}}   \\ \\ \large \mapsto  \bf{x =  \frac{ 4  \:  \pm \:  \sqrt{ 16 - 4} }{2}} \\ \\ \large \mapsto  \bf{x =  \frac{ 4  \:  \pm \:  \sqrt{ 12} }{2}} \\  \\ \large\mapsto  \bf{x =  \frac{ 4  \:  \pm \:  \sqrt{ 2 \times 2 \times 3} }{2}} \\  \\ \large\mapsto  \bf{x =  \frac{ 4  \:  \pm \: 2 \sqrt{3}  }{2}} \\  \\  \underline \bold \green{✰ \: Separate \:  the \:  equations} \\  \\ \large\mapsto  \bf{x =  \frac{ 4  \: + \: 2 \sqrt{3}  }{2}} \: \: \large \mapsto\bf{x =  \frac{ 4  \:  -  2 \sqrt{3}  }{2}} \\ \\ \large \mapsto  \bf{x =  \frac{ \cancel2(2 +  \sqrt{3}) }{ \cancel 2} } \: \large\mapsto  \bf{x =  \frac{ \cancel2(2  -  \sqrt{3}) }{ \cancel 2} } \\  \\   \underline\bold \pink{✰ After \: Rearranging} \\  \\  \:   \bf{ \mapsto \: x = 2  + \sqrt{3}} \\ \bf{\mapsto \: x = 2  -  \sqrt{3}} \end{array}

Hence the roots of the equation are 2 + √3 and 2 - √3

______________________

Answered by studylover001
62

Answer:

Question:-

Find the roots of 2(x²-4x) + 2 = 0

Solution:-

→ 2 ( x²- 4x ) + 2 = 0

→ 2x² - 8x + 2 = 0

→ 2 ( x² - 4x + 1 ) = 0

Divide both sides of the equation by the same term i.e 2

→ x² − 4x + 1 = 0

_____________________

Using the quadratic formula

x = { (-b) ± √D } / 2a

D = b² - 4ac

Here :

  • a = 1
  • b = (-4)
  • c = 1

→ x² − 4x + 1 = 0

D = (-4)² - 4(1)(1)

  • 16 - 4
  • 12

_____________________

  • x = { (-b) ± √D } / 2a

  • { -(-4) ± √12 } / 2(1)

  • ( 4 ± 2√3 ) / 2

  • 2 ( 2 ± √3 ) / 2

  • 2 ± √3

_____________________

Separate the equations

x = 2 + √3

x = 2 - √3

_____________________

Hence the roots of the equation are :

2 + √3 and 2 - √3

_____________________

Hope it helps you :)

Similar questions