Math, asked by kitu6852, 9 months ago

find the roots of √2x^2-x-√2=0 are​

Answers

Answered by dhruvtiwari820
1

Answer:

x= root 2

Step-by-step explanation:

after solving square

2x-x-root2=0

x=root2

Answered by Anonymous
94

⠀⠀⠀⠀⠀{ \huge \bf{ \mid{ \overline{ \underline{ \pink{QUESTION}}}}  \mid}} \longrightarrow</p><p>

find the roots of √2x^2-x-√2=0 .

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀\huge{ \underline{ \red{ \bold{ \underline{ \bf{AnSweR }}}}}}

⠀⠀  \large\underline{ \underline{ \blue{ \bold {Given}}}} =  &gt;

quadratic equation = \bf \sqrt{2}  {x}^{2}  - x -  \sqrt{2}  = 0

━━━━━━━━━━━━━━━━━━

⠀⠀  \large\underline{ \underline{ \blue{ \bold {To \:Find}}}} =  &gt;

we have to find the roots .

━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀✾\huge\underline{ \underline{ \green{ \bold{solution}}}}

⠀ By using quadratic formula

⠀⠀⠀ \boxed{ \fbox{ \red{ \frac{ - b +  -  \sqrt{b {}^{2} - 4ac } }{2a} }}}

 =  \frac{ - ( - 1) +  -  \sqrt{ - 1 {}^{2} - 4 \sqrt{2}  \times ( -  \sqrt{2)}  } }{2 \sqrt{2} }  \\  \\  =  &gt;  \frac{1 +  -  \sqrt{1 + 4 \sqrt{2 \times  \sqrt{2} } } }{2  \sqrt{2} } \\  \\  =  &gt;  \frac{1 +  -  \sqrt{1 + 4 \times 2} }{2 \sqrt{2} }  \\  \\  =  &gt;  \frac{1 + -  \sqrt{1 + 8} }{2 \sqrt{2} }

⠀⠀⠀ \boxed{ \blue{ \fbox{ \green{x =  \sqrt{2}  \ \:  \:  \ \:  :{ \pink { or}} \:  \:  \:  \:  \: { \red{ \: x =  \frac{ -  \sqrt{2} }{2} }}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

hops this may help you

⠀⠀⠀⠀⠀⠀⠀⠀ \huge{ \pink{ \ddot{ \smile}}}

⠀⠀⠀⠀⠀⠀ \huge \mathfrak{ \blue { \bigstar{thanks}}}

Similar questions