Math, asked by devraj6960, 6 months ago

find the roots of 4x^2 + 4root 3x+3 by quadratic formula ​

Answers

Answered by prince5132
9

GIVEN :-

  • A quadratic equation 4x² + 4√3 x + 3 = 0.

TO FIND :-

  • The roots of the quadratic equation.

SOLUTION :-

 \\    : \implies \displaystyle \sf \:4x ^{2}  + 4 \sqrt{3} x + 3 = 0 \\  \\

Now by using the quadratic formula,

 \\  \\ : \implies \displaystyle \sf \:x =  \frac{ - b \pm \sqrt{b ^{2} - 4ac } }{2a}   \\  \\

  • a = 4.
  • b = 4√3.
  • c = 3.

 \\  \\  : \implies \displaystyle \sf \:x =  \frac{ - 4 \sqrt{3} \pm \sqrt{(4 \sqrt{3}) ^{2}   - 4 \times 4 \times 3}  }{2 \times 4}  \\  \\

 : \implies \displaystyle \sf \:x =  \frac{ - 4 \sqrt{3} \pm \sqrt{16 \sqrt{9} - 48 }  }{8}  \\  \\

 : \implies \displaystyle \sf \:x =  \frac{ - 4 \sqrt{3} \pm \sqrt{16 \times 3 - 48}  }{8}  \\  \\

 : \implies \displaystyle \sf \:x =  \frac{ - 4 \sqrt{3}  \pm \sqrt{0} }{8}  \\  \\

 : \implies \displaystyle \sf \:x =  \frac{ - 4 \sqrt{3}  +  \sqrt{0} }{8}  \: , \: x =  \frac{ - 4 \sqrt{3}  -  \sqrt{0} }{8}  \\  \\

 : \implies \displaystyle \sf \:x =  \frac{ - 4 \sqrt{3}  +  0 }{8}  \: , \: x =  \frac{ - 4 \sqrt{3}  -  0 }{8}  \\  \\

: \implies \displaystyle \sf \:x =  \frac{ - 4 \sqrt{3}  }{8}  \: , \: x =  \frac{ - 4 \sqrt{3}   }{8}  \\  \\

: \implies \underline{ \boxed{ \displaystyle \sf \:x =  \frac{ -  \sqrt{3}   }{2}  \: , \: x =  \frac{ -  \sqrt{3}  }{2} }} \\  \\

Answered by Anonymous
3

Answer:

 \huge \bf \: solution

4x² + 4√3x + 3 = 0

Now

Applying Quardtic formula

x = -b ± √b² - 4ac / 2a

  • A = 4
  • B = 43
  • C = 3

x = -4 √3 ± √(4√3)² - 4× 4 × 3 / 2 × 4

x = -4√3 ± √16√9 - 48 /8

x = -4 √3 ± √16 × 3 - 48 /8

x = -4√3 ±0/8

Now,

x = -4 √3 + √0/8 , x = -4 √3 - √0/8

x = -4√3 + 0/8 , x = -4√3 - 0/8

x = -4√3 - 0 /8, x = -4√3-0/8

 \huge \bf \: x \:  =  \frac{ -\sqrt{3} }{2},  x \:  =   \frac{ -\sqrt{3} }{2}


prince5132: Good !!
Similar questions