Math, asked by mahesh3311, 1 year ago

find the roots of given equation by the method of completing the square x^2–(√2+1)x+√2=0 ​

Answers

Answered by waqarsd
0

 {x}^{2}  - ( \sqrt{2}  + 1)x +  \sqrt{2}  = 0 \\  \\  {x}^{2}  - 2 \times ( \frac{ \sqrt{2}  + 1}{2} )x  =  -  \sqrt{2}  \\  \\  {x}^{2}  - ( \sqrt{2}  + 1)x +  \frac{3 + 2 \sqrt{2} }{4}  - ( \frac{3 + 2 \sqrt{2} }{4} ) =  -  \sqrt{2}  \\  \\  {(x - ( \frac{ \sqrt{2}  + 1}{2} ))}^{2}  =    \frac{3 + 2 \sqrt{2} }{4} - \sqrt{2}  \\  \\ {(x - ( \frac{ \sqrt{2}  + 1}{2} ))}^{2} =  \frac{3 - 2 \sqrt{2} }{4}  \\  \\ {(x - ( \frac{ \sqrt{2}  + 1}{2} ))} =  | \frac{ \sqrt{3 - 2 \sqrt{2} } }{2} |  \\  \\ x =  \frac{ \sqrt{2} + 1 +  \sqrt{3 - 2 \sqrt{2} }  }{2}  \\  \\ x = \frac{ \sqrt{2} + 1  -   \sqrt{3 - 2 \sqrt{2} }  }{2}  \\  \\

hope it helps.

Similar questions