Math, asked by kartik2706, 1 year ago

find the roots of quadratic equation

Attachments:

Answers

Answered by Sushmita611
1
I hope this is correct.
Attachments:

Sushmita611: yes Kartik Dl ka matlab?
kartik2706: mtlb maine brainly pe ask question se ask kr liya a
Sushmita611: tu mazak kar rahe ho kya?? ask question se hi to ask karte hai!
kartik2706: hn hn vhi
kartik2706: ≧ω≦
Answered by Anonymous
1

Answer:

  \implies \:  \red{\boxed{x \:  = 5 \: , \:  \frac{5}{2} }}

Step-by-step explanation:

Solution :

According to the question,

  \small \red{ \: \frac{x -  1}{x - 2}  +  \frac{x - 3}{x - 4}  =  \frac{10}{3}}  \\  \\ taking \: lcm \\  \\  \small \frac{(x - 1)(x - 4) + (x - 3)(x - 2)}{(x - 2)(x - 4)}  =  \frac{10}{3}  \\  \\   \small \: \frac{ {x}^{2}  - 5x + 4 +  {x}^{2}  - 5x  + 6}{ {x}^{2}  - 6x + 8}  =  \frac{10}{3}  \\  \\  \small \: 3 \big(2 {x}^{2}  - 10x + 10 \big) = 10 \big( \:  {x}^{2}  - 6x + 8 \big) \\  \\  \small \: 10 {x}^{2}  - 6 {x}^{2}  - 60x + 30x + 80 - 30 = 0 \\  \\ \: 4  {x}^{2}  - 30x + 50 = 0 \\  \\ 2 {x}^{2}  - 15x + 25 = 0 \\  \\ \: 2  {x}^{2}  - 10x - 5x + 25 = 0 \\  \\ 2x(x - 5)  - 5(x - 5) = 0 \\  \\ (x - 5)(2x - 5) = 0

 \star \: case \: (1) \\  \implies \: (x - 5) = 0 \\  \\  \implies \:  \boxed{x = 5} \\  \\  \star \: case \: (2) \\  \implies \: (2x - 5) = 0 \\  \\  \implies \: 2x = 5 \\  \\  \implies \: \boxed{ x =   \frac{5}{2} }

Similar questions