find the roots of the equation 1/2x-3 + 1/x-5=1 ;x not equal to 3/2,5
Answers
/* Compare above equation with ax² + bx + c = 0,we get */
/* By Quadratic Formula: */
Therefore.,
••••♪
Step-by-step explanation:
Given
(2x−3)
1
+
(x−5)
1
=1
\implies \frac{x-5 + 2x - 3}{(2x-3)(x-5)}=1⟹
(2x−3)(x−5)
x−5+2x−3
=1
\implies \frac{3x-8}{2x^{2}-10x-3x+15} = 1⟹
2x
2
−10x−3x+15
3x−8
=1
\implies \frac{3x-8}{2x^{2}-13x+15} = 1⟹
2x
2
−13x+15
3x−8
=1
\implies 3x - 8 = (2x^{2} - 13x + 15 )⟹3x−8=(2x
2
−13x+15)
\implies 0 = 2x^{2} - 13x + 15 - 3x + 8⟹0=2x
2
−13x+15−3x+8
\implies 2x^{2} - 16x+ 23 = 0⟹2x
2
−16x+23=0
/* Compare above equation with ax² + bx + c = 0,we get */
a = 2 , \: b = -16, \:c = 23a=2,b=−16,c=23
\begin{lgathered}Discreminant (D) = b^{2} - 4ac \\= (-16)^{2} - 4\times 2\times 23\\= 256 - 184 \\= 72\end{lgathered}
Discreminant(D)=b
2
−4ac
=(−16)
2
−4×2×23
=256−184
=72
/* By Quadratic Formula: */
\begin{lgathered}x = \frac{-b\pm \sqrt{D}}{2a} \\= \frac{-(-16)\pm \sqrt{72}}{2\times 2}\\= \frac{16±6\sqrt{2}}{4}\\= \frac{2(8\pm 3\sqrt{2}}{4}\\= \frac{8\pm 3\sqrt{2}}{2}\end{lgathered}
x=
2a
−b±
D
=
2×2
−(−16)±
72
=
4
16±6
2
=
4
2(8±3
2
=
2
8±3
2
Therefore.,
\red{ Roots \:of \: the \: equation } \green { = \frac{8\pm 3\sqrt{2}}{2}}Rootsoftheequation=
2
8±3
2
••••♪