Math, asked by manjotchawla18, 3 months ago

find the roots of the equation 4x²-2x+1/4=0 by using the method of quadratic formula​

Answers

Answered by skanthah
1

Answer:

Roots of the quadratic equation are equal and it equals 1/4

Step-by-step explanation:

4x²-2x+1/4=0 (multiply by 4)

16x²-8x+1=0 ; a=16, b=-8 , c=1.

D=\sqrt{b^{2}-4ac\\ }

 = \sqrt{(-8)^{2}-(4)(16)(1) }

 = \sqrt{64-64}

 =0

So the roots are equal.

x= (-b ± D)/2a

x=(8/32)

x=1/4

Answered by Anonymous
29

 \large \maltese \:  \:  \:  \sf \underline{ \underline{Question \:  : }}

  • Find the roots of function 4x²-2x+1/4 using quadratic formula or Sridharacharya Formula

  {\large{\bull }}\:  \:  \:  \:  \mathfrak{ \underline{ \underline{Concepts  \:  \: about \:  \:  Sridharacharya  \:  \: formula} \:  \:  \: }}_{ \bigstar \star}

  • Usually we use middle term to evaluate the roots of a quadratic equation. But sometimes it gets harder when it comes for a irrational number or any other fractions along with for imaginary numbers. We directly use quadratic equation formula to get the value of roots or zeros, discovered by Indian Mathematician Sridharacharya.
  • The Formula is

 \large \longrightarrow \bf \: x =  \frac{ - b \pm \sqrt{ {(b)}^{2}  - 4ac} }{2a}  \\

 \bull\:  \:  \:  \:  \mathfrak   { \underline{ \underline{Let's  \:  \: solve  \:  \: this \:  \:  problem} \: !!}}

 \large \maltese \:  \:  \:  \sf \underline{ \underline{ Solution\:  : }}

 \longrightarrow\bf  \:  \:  \: \: 4 {x}^{2}  - 2x +  \frac{1}{4}  = 0

 \longrightarrow \:  \:  \: \:   \sf \: x =  \frac{ -(- 2) \pm \sqrt{ {( - 2)}^{2}  - 4 \times (4) \times ( \frac{1}{4}) } }{2 \times (4)}  \\

 \longrightarrow \:  \:  \:  \:  \:  \sf x =  \frac{ 2 \pm \sqrt{4 - 4} }{8}  \\

 \longrightarrow \:  \:  \:  \:  \:  \:  { \underline{\boxed{ \bf{\:\:  \frac{1}{4} \:\:}} \:  \: }}_{ \bigstar \star}

Similar questions