Math, asked by ravi6374, 3 months ago

find the roots of the equation 5x² - 6x - 2 = 0 by the method of completing square.​

Answers

Answered by Anonymous
44

Given :

  • 5x² - 6x - 2 = 0

To Find :

  • Roots of the equation ?

Solution :

•Multiplying the equation throughout by 5, we get

 \implies{ \rm{25x ^{2}  - 30x - 10 = 0}}

• This is the same as :

{ \rm{ \implies{(5x)^{2}  - 2 \times (5x) \times 3 + 3^{2}  - 3^{2}  - 10 = 0}}}

 \implies{ \rm{(5x - 3)^{2}  - 9 - 10 = 0}}

 \implies{ \rm{(5x - 3)^{2}  - 19 = 0}}

 \implies{ \rm{(5x - 3) ^{2}  = 19}}

 \implies{ \rm{5x - 3 = ± \sqrt{19}}}

 \implies{ \rm{5x = 3± \sqrt{19}}}

 \implies{ \rm{x =  \frac{3 \: ± \:  \sqrt{19} }{5} }}

{ \rm \implies{∴ The \:  roots \:  are \:  \frac{3 +  \sqrt{19} }{5}  \: and \:  \frac{3 -  \sqrt{19} }{5}}}

{ \rm{ \implies{Verify  \: that \:  the  \: roots  \: are {  \red{ \:  \frac{3 +  \sqrt{19} }{5}  \: and \:  \frac{3 -  \sqrt{19} }{5} }}}}}

Similar questions