Math, asked by NainaMehra, 1 year ago

Find the roots of the equation, if they exists, by applying the quadratic formula :

4x {}^{2}  + 4bx - (a {}^{2}  - b {}^{2} ) = 0

Answers

Answered by siddhartharao77
12

Given Equation is 4x^2 + 4bx - (a^2 - b^2) = 0.

Here, a = 4, b = 4b, c = -(a^2 - b^2) = -a^2 + b^2

(i)

=> x=\frac{-b+\sqrt{b^2-4ac}}{2a}

=>\frac{-(4b)+ \sqrt{(4b)^2 - 4(4)(-a^2 + b^2)}}{2(4)}

=>\frac{-4b+\sqrt{16b^2+16a^2-16b^2}}{8}

=> \frac{-4b+ \sqrt{16a^2}}{8}

=> \frac{-4b+4a}{8}

=> \frac{4(b-a)}{8}

=> \frac{b-a}{2}



(ii)

=>x =\frac{-b-\sqrt{b^2-4ac}}{2a}

=>\frac{-4b- \sqrt{(4b)^2 - 4(4)(-a^2 + b^2}}{2*4}

=>\frac{-4b- \sqrt{16b^2 + 16a^2 - 16b^2}}{8}

=>\frac{-4b+ \sqrt{16a^2}}{8}

=>\frac{-4b-4a}{8}

=>-\frac{b+a}{2}


Therefore, the roots of the equation are:

=>x=\boxed{\frac{a-b}{2},-\frac{b+a}{2}}



Hope it helps!

Answered by Anonymous
5

 \huge \bf \purple{Hey  \: there !! }


The given quadratic equation :-

4x {}^{2} + 4bx - (a {}^{2} - b {}^{2} ) = 0


Comparing it with Ax² + Bx + C = 0 , we get

A = 4, B = 4b and C = -( a² - b² ) .


•°• D = B² - 4AC .

= (4b)² - 4 × 4 × [ - ( a² - b² ) ] .

= 16b² + 16a² - 16b² .

= 16a² > 0.

So, the given equation has real roots .

 \alpha  =  \frac{ - B +  \sqrt{D} }{2A}  \\  \\  =  \frac{ - 4b +  \sqrt{16 {a}^{2} } }{2 \times 4} . \\  \\  =  \frac{ - 4b + 4a}{8} . \\  \\  =  \frac{4( - b +a) }{8}  =  \boxed{ \green{  \frac{1}{2}  (a + b).}} \\  \\ and \\  \\  \beta  = \frac{ - B  -   \sqrt{D} }{2A}  \\  \\  =  \frac{ - 4b  -   \sqrt{16 {a}^{2} } }{2 \times 4} \\  \\  =  \frac{ - 4b  -  4a}{8} . \\  \\  =  \frac{ - 4(a + b)}{8}  =  \boxed{ \green{  \frac{ - 1}{2} (a + b).}}


✔✔ Hence, it is solved ✅✅.



 \huge \red{ \boxed{ \boxed{ \mathbb{THANKS}}}}




 \huge \bf \blue{ \#BeBrainly.}
Similar questions