Math, asked by nishantmehta12057, 9 months ago

Find the roots of the equation:

question number 5 plez tell .e fast it's urgent ​

Attachments:

Answers

Answered by TrickYwriTer
3

Step-by-step explanation:

Given -

  • x + 1/x = 4¼

To Find -

  • Roots of the equation

x + 1/x = 17/4

» x² + 1/x = 17/4

» x² + 1 = 17x/4

» x² + 17x/4 + 1 = 0

» 4x² + 17x + 4/4 = 0

» 4x² + 17x + 4 = 0

Now,

Factorising this equation, we get :

» 4x² + 16x + x + 4

» 4x(x + 4) + 1(x + 4)

» (4x + 1)(x + 4)

Zeroes are -

4x + 1 = 0 and x + 4 = 0

  • x = -1/4 and x = -4

Verification :-

  • α + β = -b/a

» -1/4 - 4 = -17/4

» -1 - 16/4 = -17/4

» -17/4 = -17/4

LHS = RHS

And

  • αβ = c/a

» -1/4 × -4 = 4/4

» 1 = 1

LHS = RHS

Hence,

Verified..

Answered by silentlover45
1

  \huge \mathfrak{Answer:-}

\large\underline\mathrm{the \: value \: of \: 4x² \: + \: 17x \: + \: 4 \: is \: x \: = \: (-1/4 \: , \:  -4).}

\large\underline\mathrm{Given:-}

  • x + 1/x = 4 ¹/4

\large\underline\mathrm{To \: find}

  • Equation of the roots.

\large\underline\mathrm{Solution}

\implies x + 1/x = 17/4

\implies (x² + 1)/x = 17/4

\implies x² + 1 = 17x/4

\implies x² + 17x/4 + 1 = 0

\implies (4x² + 17x + 4)/4

\implies 4x² + 17x + 4 = 0

\large\underline\mathrm{Now}

\large\underline\mathrm{factorising \: in \: this \: equation.}

\implies 4x² + 17x + 4 = 0

\implies 4x(x + 4) + 1(x + 4) = 0

\implies (4x + 1)(x + 4)

\implies 4x + 1 = 0

\implies x = -1/4

\implies x + 4 = 0

\implies x = -4

\large\underline\mathrm{hence}

\large\underline\mathrm{the \: value \: of \: 4x² \: + \: 17x \: + \: 4 \: is \: x \: = \: (-1/4 \: , \:  -4).}

\large\underline\mathrm{Hope \: it \: helps \: you \: plz \: mark \: me \: brainlist}

Similar questions