Math, asked by kaushalchordiya, 9 months ago

find the roots of the equation
(x+2)^2=4(x+1)-1​

Answers

Answered by jagatpaljagat3844
1

Answer:

hope you got your answer

Attachments:
Answered by Anonymous
3

Answer:

\sf{The \ roots \ of \ the \ given \ equation \ are}

\sf{\sqrt{-1} \ and \ -\sqrt{-1}.}

Given:

\sf{The \ given \ equation \ is}

\sf{\longmapsto{(x+2)^{2}=4(x+1)-1}}

To find:

\sf{The \ roots \ of \ the \ equation.}

Solution:

\sf{The \ given \ equation \ is}

\sf{\longmapsto{(x+2)^{2}=4(x+1)-1}}

\sf{\leadsto{x^{2}+4x+4=4x+4-1}}

\sf{\leadsto{x^{2}+1=0}}

\sf{Here, \ a=1, \ b=0 \ and \ c=1}

\sf{b^{2}-4ac=0^{2}-4(1)(1)}

\sf{\leadsto{b^{2}-4ac=-4}}

\sf{By \ quadratic \ formula}

\sf{\mapsto{x=\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}}}

\sf{\mapsto{x=\dfrac{-0\pm\sqrt{-4}}{2(1)}}}

\sf{\mapsto{x=\dfrac{\pm2\sqrt{-1}}{2}}}

\sf{\mapsto{x=\pm\sqrt{-1}}}

\sf{\mapsto{x=\sqrt{-1} \ or \ -\sqrt{-1}}}

\sf\purple{\tt{\therefore{The \ roots \ of \ the \ given \ equation \ are}}}

\sf\purple{\tt{\sqrt{-1} \ and \ -\sqrt{-1}.}}

Similar questions